精英家教网 > 初中数学 > 题目详情
(2007•湖州)在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2).C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.
(1)填空:C点的坐标是______,△ABC的面积是______;
(2)将△ABC绕点C旋转180°得到△A1B1C1,连接AB1、BA1,试判断四边形AB1A1B是何种特殊四边形,请说明理由;
(3)请探究:在x轴上是否存在这样的点P,使四边形ABOP的面积等于△ABC面积的2倍?若存在,请直接写出点P的坐标(不必写出解答过程);若不存在,请说明理由.

【答案】分析:(1)此点应在AB的垂直平分线上,在第一象限,腰长又是无理数,只有是点(1,1),从A,B向x轴引垂线,把所求的三角形的面积分为一个直角三角形和一个直角梯形的面积减去一个直角三角形的面积.
(2)旋转180°后可得新四边形的对角线互相平分,那么先判断是平行四边形,然后根据等腰三角形的性质得到对角线相等,那么所求的四边形是矩形.
(3)根据平行四边形的性质,结合(1)中的方法解答.
解答:解:(1)(1,1),4;

(2)四边形AB1A1B是矩形.
∵AC=A1C,BC=B1C,AC=BC
∴AA1=BB1
∴四边形AB1A1B是矩形

(3)∵S△ABC=S梯形ABDE+S矩形BDCF-(S△AEC+S△BCF)=×(1+3)×2+3×1-×1×3-×1×3=4,
∴四边形ABOP的面积等于8.
同(1)中的方法得到三点A,B,O构成的面积为6.当P在O左边时,△APO的面积应为2,高为4,那么底边长为1,所以P(-1,0);
当P在O右边时,△BOP的面积应为2,高为2,所以底边长为2,此时P坐标为(2,0).
故点P的坐标为(2,0),(-1,0).
点评:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.对角线互相平分且相等的四边形是平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《概率》(06)(解析版) 题型:解答题

(2007•湖州)在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.
(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;
(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的旋转》(04)(解析版) 题型:解答题

(2007•湖州)在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2).C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.
(1)填空:C点的坐标是______,△ABC的面积是______;
(2)将△ABC绕点C旋转180°得到△A1B1C1,连接AB1、BA1,试判断四边形AB1A1B是何种特殊四边形,请说明理由;
(3)请探究:在x轴上是否存在这样的点P,使四边形ABOP的面积等于△ABC面积的2倍?若存在,请直接写出点P的坐标(不必写出解答过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的旋转》(03)(解析版) 题型:填空题

(2007•湖州)在平面直角坐标系中,已知P1的坐标为(1,0),将其绕着原点按逆时针方向旋转30°得到点P2,延长OP2到点P3,使OP3=2OP2,再将点P3绕着原点按逆时针方向旋转30°得到P4,延长OP4到点P5,使OP5=2OP4,如此继续下去,则点P2010的坐标是   

查看答案和解析>>

科目:初中数学 来源:2007年浙江省湖州市中考数学试卷(解析版) 题型:解答题

(2007•湖州)在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2).C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.
(1)填空:C点的坐标是______,△ABC的面积是______;
(2)将△ABC绕点C旋转180°得到△A1B1C1,连接AB1、BA1,试判断四边形AB1A1B是何种特殊四边形,请说明理由;
(3)请探究:在x轴上是否存在这样的点P,使四边形ABOP的面积等于△ABC面积的2倍?若存在,请直接写出点P的坐标(不必写出解答过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年浙江省湖州市中考数学试卷(解析版) 题型:解答题

(2007•湖州)在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.
(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;
(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.

查看答案和解析>>

同步练习册答案