精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=
1
2
S△ABC,④△DEF始终为等腰直角三角形.其中正确的是(  )
分析:延长FD到M使MD=DF,连结AM、EM、CD,根据等腰直角三角形的性质得CD=BD,∠B=∠DCA=45°,CD⊥AB,再根据等角的余角相等得∠CDE=∠BDF,则可根据“AAS”判断△CDE≌△BDF,所以CE=BF,DE=DF,易得AE+BF=AC,△△DEF等腰直角三角形;再由△CDE≌△BDF得S△CDE=S△BDF,于是S四边形CEDF=S△CDB=
1
2
S△ABC;然后根据“SAS”判断△DAM≌△DBF,得到AM=BF,∠DAM=∠B=45°,则△AME为直角三角形,所以AE2+AM2=EM2,即AE2+BF2=EM2,接着由ED垂直平分MF得到EM=EF,所以AE2+BF2=EF2
解答:解:延长FD到M使MD=DF,连结AM、EM、CD,如图,
∵AC=BC,点D为AB中点.∠GDH=90°,
∴CD=BD,∠B=∠DCA=45°,CD⊥AB,
∵∠GDF=90°,即∠CDE+∠CDF=90°,
而∠CDF+∠BDF=90°,
∴∠CDE=∠BDF,
在△CDE和△BDF中,
∠DCE=∠B
∠CDE=∠BDF
CD=BD

∴△CDE≌△BDF(AAS),
∴CE=BF,DE=DF,
∴AE+BF=AE+CE=AC,所以①正确;
∵∠EDF=90°,
∴△DEF始终为等腰直角三角形,所以④正确;
∵△CDE≌△BDF,
∴S△CDE=S△BDF
∴S四边形CEDF=S△CDB=
1
2
S△ABC,所以③正确;
在△DAM和△DBF中,
DA=DB
∠ADM=∠BDF
DM=DF

∴△DAM≌△DBF(SAS),
∴AM=BF,∠DAM=∠B=45°,
∴∠EAM=45°+45°=90°,
∴AE2+AM2=EM2
∴AE2+BF2=EM2
∵ED垂直平分MF,
∴EM=EF,
∴AE2+BF2=EF2,所以②正确.
故选A.
点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质、等腰直角三角形的性质和勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案