18£®Àí½â£ºÊýѧÐËȤС×éÔÚ̽¾¿ÈçºÎÇótan15¡ãµÄÖµ£¬¾­¹ý˼¿¼¡¢ÌÖÂÛ¡¢½»Á÷£¬µÃµ½ÒÔÏÂ˼·£º
˼·һ  Èçͼ1£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏABC=30¡ã£¬ÑÓ³¤CBÖÁµãD£¬Ê¹BD=BA£¬Á¬½ÓAD£®ÉèAC=1£¬ÔòBD=BA=2£¬BC=$\sqrt{3}$£®tanD=tan15¡ã=$\frac{1}{2+\sqrt{3}}$=$\frac{2-\sqrt{3}}{£¨2+\sqrt{3}£©£¨2-\sqrt{3}£©}$=2-$\sqrt{3}$£®
˼·¶þ  ÀûÓÿÆÆÕÊéÉϵĺͣ¨²î£©½ÇÕýÇй«Ê½£ºtan£¨¦Á¡À¦Â£©=$\frac{tan{¦Á}_{-}^{+}tan¦Â}{{1}_{+}^{-}tan¦Átan¦Â}$£®¼ÙÉè¦Á=60¡ã£¬¦Â=45¡ã´úÈë²î½ÇÕýÇй«Ê½£ºtan15¡ã=tan£¨60¡ã-45¡ã£©=$\frac{tan60¡ã-tan45¡ã}{1+tan60¡ãtan45¡ã}$=$\frac{\sqrt{3}-1}{1+\sqrt{3}}$=2-$\sqrt{3}$£®
˼·Èý  ÔÚ¶¥½ÇΪ30¡ãµÄµÈÑüÈý½ÇÐÎÖУ¬×÷ÑüÉϵĸßÒ²¿ÉÒÔ¡­
˼·ËÄ  ¡­
Çë½â¾öÏÂÁÐÎÊÌ⣨ÉÏÊö˼·½ö¹©²Î¿¼£©£®
£¨1£©Àà±È£ºÇó³ötan75¡ãµÄÖµ£»
£¨2£©Ó¦ÓãºÈçͼ2£¬Ä³µçÊÓËþ½¨ÔÚÒ»×ùСɽÉÏ£¬É½¸ßBCΪ30Ã×£¬ÔÚµØƽÃæÉÏÓÐÒ»µãA£¬²âµÃA£¬CÁ½µã¼ä¾àÀëΪ60Ã×£¬´ÓA²âµÃµçÊÓËþµÄÊӽǣ¨¡ÏCAD£©Îª45¡ã£¬ÇóÕâ×ùµçÊÓËþCDµÄ¸ß¶È£»
£¨3£©ÍØÕ¹£ºÈçͼ3£¬Ö±Ïßy=$\frac{1}{2}$x-1ÓëË«ÇúÏßy=$\frac{4}{x}$½»ÓÚA£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬½«Ö±ÏßABÈƵãCÐýת45¡ãºó£¬ÊÇ·ñÈÔÓëË«ÇúÏßÏཻ£¿ÈôÄÜ£¬Çó³ö½»µãPµÄ×ø±ê£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Èçͼ1£¬Ö»Ðè½è¼ø˼·һ»ò˼·¶þµÄ·½·¨£¬¾Í¿É½â¾öÎÊÌ⣻
£¨2£©Èçͼ2£¬ÔÚRt¡÷ABCÖУ¬ÔËÓù´¹É¶¨ÀíÇó³öAB£¬ÔËÓÃÈý½Çº¯ÊýÇóµÃ¡ÏBAC=30¡ã£®´Ó¶øµÃµ½¡ÏDAB=75¡ã£®ÔÚRt¡÷ABDÖУ¬ÔËÓÃÈý½Çº¯Êý¾Í¿ÉÇó³öDB£¬´Ó¶øÇó³öDC³¤£»
£¨3£©¢ÙÈôÖ±ÏßABÈƵãCÄæʱÕëÐýת45¡ãºó£¬ÓëË«ÇúÏßÏཻÓÚµãP£¬Èçͼ3£®¹ýµãC×÷CD¡ÎxÖᣬ¹ýµãP×÷PE¡ÍCDÓÚE£¬¹ýµãA×÷AF¡ÍCDÓÚF£¬¿ÉÏÈÇó³öµãA¡¢B¡¢CµÄ×ø±ê£¬´Ó¶øÇó³ötan¡ÏACFµÄÖµ£¬½ø¶øÀûÓúͣ¨²î£©½ÇÕýÇй«Ê½Çó³ötan¡ÏPCE=tan£¨45¡ã+¡ÏACF£©µÄÖµ£¬ÉèµãPµÄ×ø±êΪ£¨a£¬b£©£¬¸ù¾ÝµãPÔÚ·´±ÈÀýº¯ÊýµÄͼÏóÉϼ°tan¡ÏPCEµÄÖµ£¬¿ÉµÃµ½¹ØÓÚa¡¢bµÄÁ½¸ö·½³Ì£¬½âÕâ¸ö·½³Ì×é¾Í¿ÉµÃµ½µãPµÄ×ø±ê£»¢ÚÈôÖ±ÏßABÈƵãC˳ʱÕëÐýת45¡ãºó£¬ÓëxÖáÏཻÓÚµãG£¬Èçͼ4£¬ÓÉ¢Ù¿ÉÖª¡ÏACP=45¡ã£¬P£¨£¨$\frac{4}{3}$£¬3£©£¬ÔòÓÐCP¡ÍCG£®¹ýµãP×÷PH¡ÍyÖáÓÚH£¬Ò×Ö¤¡÷GOC¡×¡÷CHP£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ¿ÉÇó³öGO£¬´Ó¶øµÃµ½µãGµÄ×ø±ê£¬È»ºóÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßCGµÄ½âÎöʽ£¬È»ºó½«Ö±ÏßCGÓë·´±ÈÀýº¯ÊýµÄ½âÎöʽ×é³É·½³Ì×飬ÏûÈ¥y£¬µÃµ½¹ØÓÚxµÄ·½³Ì£¬ÔËÓøùµÄÅбðʽÅж¨£¬µÃµ½·½³ÌÎÞʵÊý¸ù£¬´ËʱµãP²»´æÔÚ£®

½â´ð ½â£º£¨1£©·½·¨Ò»£ºÈçͼ1£¬
ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏABC=30¡ã£¬ÑÓ³¤CBÖÁµãD£¬Ê¹BD=BA£¬Á¬½ÓAD£®
ÉèAC=1£¬ÔòBD=BA=2£¬BC=$\sqrt{3}$£®
tan¡ÏDAC=tan75¡ã=$\frac{DC}{AC}$=$\frac{DB+BC}{AC}$=$\frac{2+\sqrt{3}}{1}$=2+$\sqrt{3}$£»
·½·¨¶þ£ºtan75¡ã=tan£¨45¡ã+30¡ã£©
=$\frac{tan45¡ã+tan30¡ã}{1-tan45¡ã•tan30¡ã}$=$\frac{1+\frac{\sqrt{3}}{3}}{1-\frac{\sqrt{3}}{3}}$=$\frac{3+\sqrt{3}}{3-\sqrt{3}}$=2+$\sqrt{3}$£»

£¨2£©Èçͼ2£¬
ÔÚRt¡÷ABCÖУ¬
AB=$\sqrt{A{C}^{2}-B{C}^{2}}$=$\sqrt{6{0}^{2}-3{0}^{2}}$=30$\sqrt{3}$£¬
sin¡ÏBAC=$\frac{BC}{AC}$=$\frac{30}{60}$=$\frac{1}{2}$£¬¼´¡ÏBAC=30¡ã£®
¡ß¡ÏDAC=45¡ã£¬¡à¡ÏDAB=45¡ã+30¡ã=75¡ã£®
ÔÚRt¡÷ABDÖУ¬tan¡ÏDAB=$\frac{DB}{AB}$£¬
¡àDB=AB•tan¡ÏDAB=30$\sqrt{3}$•£¨2+$\sqrt{3}$£©=60$\sqrt{3}$+90£¬
¡àDC=DB-BC=60$\sqrt{3}$+90-30=60$\sqrt{3}$+60£®
´ð£ºÕâ×ùµçÊÓËþCDµÄ¸ß¶ÈΪ£¨60$\sqrt{3}$+60£©Ã×£»

£¨3£©¢ÙÈôÖ±ÏßABÈƵãCÄæʱÕëÐýת45¡ãºó£¬ÓëË«ÇúÏßÏཻÓÚµãP£¬Èçͼ3£®
¹ýµãC×÷CD¡ÎxÖᣬ¹ýµãP×÷PE¡ÍCDÓÚE£¬¹ýµãA×÷AF¡ÍCDÓÚF£®
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{2}x-1}\\{y=\frac{4}{x}}\end{array}\right.$£¬µÃ
$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-2}\\{y=-2}\end{array}\right.$£¬
¡àµãA£¨4£¬1£©£¬µãB£¨-2£¬-2£©£®
¶ÔÓÚy=$\frac{1}{2}$x-1£¬µ±x=0ʱ£¬y=-1£¬ÔòC£¨0£¬-1£©£¬OC=1£¬
¡àCF=4£¬AF=1-£¨-1£©=2£¬
¡àtan¡ÏACF=$\frac{AF}{CF}$=$\frac{2}{4}$=$\frac{1}{2}$£¬
¡àtan¡ÏPCE=tan£¨¡ÏACP+¡ÏACF£©=tan£¨45¡ã+¡ÏACF£©
=$\frac{tan45¡ã+tan¡ÏACF}{1-tan45¡ã•tan¡ÏACF}$
=$\frac{1+\frac{1}{2}}{1-\frac{1}{2}}$=3£¬¼´$\frac{PE}{CE}$=3£®
ÉèµãPµÄ×ø±êΪ£¨a£¬b£©£¬
ÔòÓÐ$\left\{\begin{array}{l}{ab=4}\\{\frac{b+1}{a}=3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=-1}\\{b=-4}\end{array}\right.$»ò$\left\{\begin{array}{l}{a=\frac{4}{3}}\\{b=3}\end{array}\right.$£¬
¡àµãPµÄ×ø±êΪ£¨-1£¬-4£©»ò£¨$\frac{4}{3}$£¬3£©£»
¢ÚÈôÖ±ÏßABÈƵãC˳ʱÕëÐýת45¡ãºó£¬ÓëxÖáÏཻÓÚµãG£¬Èçͼ4£®
ÓÉ¢Ù¿ÉÖª¡ÏACP=45¡ã£¬P£¨£¨$\frac{4}{3}$£¬3£©£¬ÔòCP¡ÍCG£®
¹ýµãP×÷PH¡ÍyÖáÓÚH£¬
Ôò¡ÏGOC=¡ÏCHP=90¡ã£¬¡ÏGCO=90¡ã-¡ÏHCP=¡ÏCPH£¬
¡à¡÷GOC¡×¡÷CHP£¬
¡à$\frac{GO}{CH}$=$\frac{OC}{HP}$£®
¡ßCH=3-£¨-1£©=4£¬PH=$\frac{4}{3}$£¬OC=1£¬
¡à$\frac{GO}{4}$=$\frac{1}{\frac{4}{3}}$=$\frac{3}{4}$£¬
¡àGO=3£¬G£¨-3£¬0£©£®
ÉèÖ±ÏßCGµÄ½âÎöʽΪy=kx+b£¬
ÔòÓÐ$\left\{\begin{array}{l}{-3k+b=0}\\{b=-1}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{3}}\\{b=-1}\end{array}\right.$£¬
¡àÖ±ÏßCGµÄ½âÎöʽΪy=-$\frac{1}{3}$x-1£®
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{3}x-1}\\{y=\frac{4}{x}}\end{array}\right.$£¬
ÏûÈ¥y£¬µÃ
$\frac{4}{x}$=-$\frac{1}{3}$x-1£¬
ÕûÀíµÃ£ºx2+3x+12=0£¬
¡ß¡÷=32-4¡Á1¡Á12=-39£¼0£¬
¡à·½³ÌûÓÐʵÊý¸ù£¬
¡àµãP²»´æÔÚ£®
×ÛÉÏËùÊö£ºÖ±ÏßABÈƵãCÐýת45¡ãºó£¬ÄÜÓëË«ÇúÏßÏཻ£¬½»µãPµÄ×ø±êΪ£¨-1£¬-4£©»ò£¨$\frac{4}{3}$£¬3£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÈñ½ÇÈý½Çº¯ÊýµÄ¶¨Òå¡¢ÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµ¡¢ºÍ£¨²î£©½ÇÕýÇй«Ê½¡¢Óôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ¡¢Çó·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄͼÏóµÄ½»µã¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢¹´¹É¶¨Àí¡¢¸ùµÄÅбðʽ¡¢½âÒ»Ôª¶þ´Î·½³ÌµÈ֪ʶ£¬¿¼²éÁËÔËÓÃÒÑÓо­Ñé½â¾öÎÊÌâµÄÄÜÁ¦£¬ÔÚ½â¾öÎÊÌâµÄ¹ý³ÌÖУ¬Óõ½ÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬Óõ½ÁËÀà±È̽¾¿µÄÊýѧ·½·¨£¬ÊÇÒ»µÀÌåÏÖпγÌÀíÄ×ÔÖ÷̽¾¿ÓëºÏ×÷½»Á÷Ïà½áºÏ£©µÄºÃÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬µãA¡¢B¡¢C¡¢D¡¢EÔÚ¡ÑOÉÏ£¬AB¡ÍCBÓÚµãB£¬tanD=3£¬BC=2£¬HΪCEÑÓ³¤ÏßÉÏÒ»µã£¬ÇÒAH=$\sqrt{10}$£¬CH=5$\sqrt{2}$£®
£¨1£©ÇóÖ¤£ºAHÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©ÈôµãDÊÇ»¡CEµÄÖе㣬ÇÒAD½»CEÓÚµãF£¬ÇóEFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®½«±ß³¤Îª4µÄµÈ±ßÈý½ÇÐÎOAB·ÅÖÃÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÆäÖÐOΪ×ø±êÔ­µã£¬µãBÔÚxÖáÕý°ëÖáÉÏ£¬µãAÔÚµÚÒ»ÏóÏÞÄÚ£¬µãDÊÇÏ߶ÎOBÉϵĶ¯µã£¬ÉèOD=m£®
£¨1£©Ö±½Óд³öµãBµÄ×ø±ê£¨4£¬0£©£®
£¨2£©Çó¡÷AODµÄÃæ»ý£¨Óú¬mµÄ´úÊýʽ±íʾ£©£®
£¨3£©Èçͼ1£¬ÒÔADΪֱ¾¶µÄ¡ÑM·Ö±ð½»OA¡¢ABÓÚµãE¡¢F£¬Á¬½ÓEF£¬ÇóÏ߶ÎEF³¤¶ÈµÄ×îСֵ£®
£¨4£©Èçͼ2£¬µãCΪÏ߶ÎABÉϵĵ㣬ÇÒBC=$\frac{1}{3}$AB£¬µãPÔÚÏ߶ÎOAÉÏ£¨²»ÓëO¡¢AÖغϣ©£®µãDÔÚÏ߶ÎOBÉÏÔ˶¯£¬µ±¡ÏCPD=60¡ãʱ£¬ÇóÂú×ãÌõ¼þµÄµãPµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¡¾ÎÊÌâÌá³ö¡¿
Èçͼ¢Ù£¬ÒÑÖª¡÷ABCÊǵÈÑüÈý½ÇÐΣ¬µãEÔÚÏ߶ÎABÉÏ£¬µãDÔÚÖ±ÏßBCÉÏ£¬ÇÒED=EC£¬½«¡÷BCEÈƵãC˳ʱÕëÐýת60¡ãÖÁ¡÷ACFÁ¬½ÓEF
ÊÔÖ¤Ã÷£ºAB=DB+AF
¡¾Àà±È̽¾¿¡¿
£¨1£©Èçͼ¢Ú£¬Èç¹ûµãEÔÚÏ߶ÎABµÄÑÓ³¤ÏßÉÏ£¬ÆäËûÌõ¼þ²»±ä£¬Ï߶ÎAB£¬DB£¬AFÖ®¼äÓÖÓÐÔõÑùµÄÊýÁ¿¹Øϵ£¿Çë˵Ã÷ÀíÓÉ
£¨2£©Èç¹ûµãEÔÚÏ߶ÎBAµÄÑÓ³¤ÏßÉÏ£¬ÆäËûÌõ¼þ²»±ä£¬ÇëÔÚͼ¢ÛµÄ»ù´¡ÉϽ«Í¼Ðβ¹³äÍêÕû£¬²¢Ð´³öAB£¬DB£¬AFÖ®¼äµÄÊýÁ¿¹Øϵ£¬²»±Ø˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®±Ï´ï¸çÀ­Ë¹Ñ§Åɶԡ±Êý¡±Ó롱ÐΡ±µÄÇÉÃî½áºÏ×÷ÁËÈçÏÂÑо¿£º
Ãû³Æ¼°Í¼ÐÎ
¼¸ºÎµãÊý
²ãÊý
Èý½ÇÐÎÊýÕý·½ÐÎÊýÎå±ßÐÎÊýÁù±ßÐÎÊý
µÚÒ»²ã¼¸ºÎµãÊý1111
µÚ¶þ²ã¼¸ºÎµãÊý2345
µÚÈý²ã¼¸ºÎµãÊý3579
¡­¡­¡­¡­¡­
µÚÁù²ã¼¸ºÎµãÊý6111621
¡­¡­¡­¡­¡­
µÚn²ã¼¸ºÎµãÊýn2n-13n-24n-3
Çëд³öµÚÁù²ã¸÷¸öͼÐεļ¸ºÎµãÊý£¬²¢¹éÄɳöµÚn²ã¸÷¸öͼÐεļ¸ºÎµãÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬Á½¸öÈ«µÈµÄ¡÷ABCºÍ¡÷DFEÖصþÔÚÒ»Æ𣬹̶¨¡÷ABC£¬½«¡÷DEF½øÐÐÈçϱ任£º
£¨1£©Èçͼ1£¬¡÷DEFÑØÖ±ÏßCBÏòÓÒƽÒÆ£¨¼´µãFÔÚÏ߶ÎCBÉÏÒƶ¯£©£¬Á¬½ÓAF¡¢AD¡¢BD£®ÇëÖ±½Óд³öS¡÷ABCÓëSËıßÐÎAFBDµÄ¹Øϵ£»
£¨2£©Èçͼ2£¬µ±µãFƽÒƵ½Ï߶ÎBCµÄÖеãʱ£¬ÈôËıßÐÎAFBDΪÕý·½ÐΣ¬ÄÇô¡÷ABCÓ¦Âú×ãʲôÌõ¼þ£¿Çë¸ø³öÖ¤Ã÷£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬½«¡÷DEFÑØDFÕÛµþ£¬µãEÂäÔÚFAµÄÑÓ³¤ÏßÉϵĵãG´¦£¬Á¬½ÓCG£¬ÇëÄãÔÚͼ3µÄλÖû­³öͼÐΣ¬²¢Çó³ösin¡ÏCGFµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÕý·½ÐÎABCDÖУ¬BDÊÇÒ»Ìõ¶Ô½ÇÏߣ¬µãPÔÚÉäÏßCDÉÏ£¨ÓëµãC¡¢D²»Öغϣ©£¬Á¬½ÓAP£¬Æ½ÒÆ¡÷ADP£¬Ê¹µãDÒƶ¯µ½µãC£¬µÃµ½¡÷BCQ£¬¹ýµãQ×÷QH¡ÍBDÓÚH£¬Á¬½ÓAH£¬PH£®
£¨1£©ÈôµãPÔÚÏ߶ÎCDÉÏ£¬Èçͼ1£®
¢ÙÒÀÌâÒⲹȫͼ1£»
¢ÚÅжÏAHÓëPHµÄÊýÁ¿¹ØϵÓëλÖùØϵ²¢¼ÓÒÔÖ¤Ã÷£»
£¨2£©ÈôµãPÔÚÏ߶ÎCDµÄÑÓ³¤ÏßÉÏ£¬ÇÒ¡ÏAHQ=152¡ã£¬Õý·½ÐÎABCDµÄ±ß³¤Îª1£¬Çëд³öÇóDP³¤µÄ˼·£®£¨¿ÉÒÔ²»Ð´³ö¼ÆËã½á¹û£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¾Ýͳ¼Æ2014ÄêÎÒ¹ú¸ßм¼Êõ²úÆ·³ö¿Ú×ܶî40570ÒÚÔª£¬½«Êý¾Ý40570ÒÚÓÿÆѧ¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
A£®4.0570¡Á109B£®0.40570¡Á1010C£®40.570¡Á1011D£®4.0570¡Á1012

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®µ¥Ïîʽ7a3b2µÄ´ÎÊýÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸