【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数. “燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少. 下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.
根据图中提供的信息,下列说法:
①以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
②以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少
③以高于80km/h的速度行驶时,行驶相同路程,乙车比丙车省油
④以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升
正确的是________(填写正确结论的序号).
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中。
(1)请写出△ABC各点的坐标;
(2)求出△ABC的面积S△ABC;
(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A1B1C1,在图中画出△A1B1C1,并写出△A1B1C1的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.
(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?
(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在开展 “校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.
(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?
(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线经过点A(﹣3,0),F(8,0),B(0,4)三点
(1)求抛物线解析式及对称轴;
(2)若点D在线段FB上运动(不与F,B重合),过点D作DC⊥轴于点C(x,0),将△FCD沿CD向左翻折,点B对应点为点E,△CDE与△FBO重叠部分面积为S.
①试求出S与x之间的函数关系式,并写出自变量取值范围.
②是否存在这样的点C,使得△BDE为直角三角形,若存在,求出C点坐标,若不存在,请说明理由;
(3)抛物线对称轴上有一点M,平面内有一点N,若以A,B,M,N四点组成的四边形为菱形,求点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AE与CD相交于点B,射线BF平分∠ABC,射线BG在∠ABD内,
(1)若∠DBE的补角是它的余角的3倍,求∠DBE的度数;
(2)在(1)的件下,若∠DBG=∠ABG﹣33°,求∠ABG的度数;
(3)若∠FBG=100°,求∠ABG和∠DBG的度数的差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=-x+4的图象与x轴、y轴的交点分别为A、B,点P在直线y=2x上.
(1)若点P是一次函数y=-x+4的图象与直线y=2x的交点,求△OBP的面积;
(2)若点P的坐标为(3,6),求△ABP的面积;
(3)若△ABP的面积为12时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.
例如:tan15°=tan(45°﹣30°)== =
= =.
根据以上材料,解决下列问题:
(1)求tan75°的值;
(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732, ≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:
①A,B两城相距300千米;
②乙车比甲车晚出发1小时,却早到1小时;
③乙车出发后2.5小时追上甲车;
④当甲、乙两车相距50千米时,t=或.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com