精英家教网 > 初中数学 > 题目详情

观察下列各图,寻找对顶角(不含平角):

(1)如图a,图中共有______对对顶角;
(2)如图b,图中共有______对对顶角;
(3)如图c,图中共有______对对顶角;
(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成______对对顶角;
(5)若有2008条直线相交于一点,则可形成______对对顶角.

解:(1)如图a,图中共有1×2=2对对顶角;
(2)如图b,图中共有2×3=6对对顶角;
(3)如图c,图中共有3×4=12对对顶角;
(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,
若有n条直线相交于一点,则可形成(n-1)n对对顶角;
(5)若有2008条直线相交于一点,则可形成(2008-1)×2008=4 030 056对对顶角.
分析:由图示可得,(1)两条直线相交于一点,形成2对对顶角;
(2)三条直线相交于一点,形成6对对顶角,
(3)4条直线相交于一点,形成12对对顶角;
依次可找出规律:(4)若有n条直线相交于一点,则可形成(n-1)n对对顶角;
(5)将n=2008代入(n-1)n,可得2008条直线相交于一点可形成的对顶角的对数.
点评:本题考查多条直线相交于一点,所形成的对顶角的个数的计算规律.即若有n条直线相交于一点,则可形成(n-1)n对对顶角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、观察下列各图,寻找对顶角(不含平角):

(1)如图a,图中共有
2
对对顶角;
(2)如图b,图中共有
6
对对顶角;
(3)如图c,图中共有
12
对对顶角;
(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成
(n-1)n
对对顶角;
(5)若有2008条直线相交于一点,则可形成
4030056
对对顶角.

查看答案和解析>>

同步练习册答案