精英家教网 > 初中数学 > 题目详情
18.如图,在矩形ABCD中,E是AD边上一点,连接BE,作BE的垂直平分线分别交AD、BC于点F,G,FG与BE的交点为O,连按BF和EG,试判断四边形BFEG的形状,并说明理由.

分析 根据垂直平分线的性质求出OB=OE,BF=EF,根据矩形性质和平行线性质求出∠FEO=∠GBO,证△FOE≌△GOB,推出OF=OG,即可得出答案;

解答 解:四边形BFEG的形状是菱形,
理由是:∵BE的垂直平分线分别交AD、BC于点F、G,
∴OB=OE,BF=EF,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠FEO=∠GBO,
在△FOE和△GOB中,$\left\{\begin{array}{l}{∠FEO=∠GBO}&{\;}\\{OE=OB}&{\;}\\{∠FOE=∠GOB}&{\;}\end{array}\right.$,
∴△FOE≌△GOB,
∴OF=OG,
∵OB=OE,
∴四边形BFEG是平行四边形,
∵BF=EF,
∴四边形BFEG是菱形.

点评 本题考查了矩形的性质,垂直平分线性质,平行四边形的判定,勾股定理,菱形的判定的应用,能综合运用定理进行推理和计算是解此题的关键,综合性比较强,难度偏大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.填写下面证明过程中的推理依据:
已知:如图,AB∥CD,BE平分∠ABC,CF平分∠BCD.求证:∠1=∠2
证明:∵AB∥CD (已知 )
∴∠ABC=∠BCD(两直线平行,内错角相等 )
∵BE平分∠ABC,CF平分∠BCD (已知 )
∴∠1=∠ABC,(角平分线的定义 )
∠2=∠BCD. (角平分线的定义 )
∴∠1=∠2. (等量代换 )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.抽查的甲、乙两班部分学生的视力,记录如下:
甲班0.10.91.01.11.11.31.5
乙班0.80.91.01.11.11.31.5
(1)求两组数据的平均数,众数,中位数.
(2)比较两组数据的特征,谈谈对“极端值”的认识.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,点A在x轴的负半轴上,其坐标为(-6,0),点C在y轴的正半轴上,其坐标为(0,8),分别过点A、C作y轴的平行线,两平行线相交于点D
(1)点B坐标为(-6,8);
(2)动点P从点B出发,以每秒2个单位长度的速度沿折线B-A-O匀速移动,设点P移动的时间为t秒,用含t的式子表示P点坐标;
(3)在(2)的条件下,连接AC、CP,求t为何值时,△ACP的面积与长方形OABC的面积比为1:4,并求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.
(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为2$\sqrt{3}$,当∠DOE=15°时,求线段EF的长;
(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,证明:PE=2PF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为22.5°或45°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若a-b=2,则代数式a2-b2-4b的值为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,点A为y轴正半轴上一点,以OA为底边向y轴右侧作等腰三角形OAB,使得∠B=120°,C为x轴上一点,连接AC,以AC为底边向右侧作等腰三角形ACD,使得∠D=120°.
(1)若点A的纵坐标为6,
①连接BD,求证:△ABD∽△AOC;
②连接OD,求线段OD的最小值.
(2)设点A纵坐标为a,点C的横坐标为c,当△AOD为等腰三角形时,$\frac{c}{a}$的值为$±\sqrt{2}$或$\frac{\sqrt{3}±\sqrt{11}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.据有关部门统计,2016年全国骚扰电话高达270亿,请你将数据270亿用科学记数法表示为2.7×1010

查看答案和解析>>

同步练习册答案