A. | ①③ | B. | ①②③ | C. | ②④ | D. | ②③④ |
分析 根据平行四边形的对角线互相平分可得OA=OC,再根据两直线平行,内错角相等可得∠OAE=∠OCG,然后利用“角边角”证明△AOE和△COG全等,根据全等三角形对应边相等可得OE=OG,同理可得OF=OH,再根据对角线互相平分的四边形是平行四边形判断出四边形EFGH是平行四边形,然后根据对角线互相垂直的平行四边形是菱形得到四边形EFGH是菱形,根据菱形的性质得到∠HGE=∠FGE,根据全等三角形的判定得到△DOG≌△BOE,同理△DOH≌△BOF,于是得到S四边形DHOG=S四边形BFOE,由于OH不一定等于OE,AH不一定等于AE,得到△AHO不一定全等于△AEO,于是得到结论.
解答 解:四边形EFGH是菱形.
证明:连接AC,BD,
则AC,BD必过O,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EAO=∠GCO,
在△EAO和△CGO中,
$\left\{\begin{array}{l}{∠EAO=∠GCO}\\{AO=CO}\\{∠AOE=∠COG}\end{array}\right.$,
∴△EAO≌△CGO(ASA),
∴OE=OG,
同理OH=OF,故①正确;
∴四边形EFGH是平行四边形,
又∵HF⊥EG,
∴四边形EFGH是菱形,
∴∠HGE=∠FGE,故②正确;
∵四边形ABCD是平行四边形,
∴OD=OB,
在△DOG与△BOE中,$\left\{\begin{array}{l}{OD=OB}\\{∠BOE=∠DOG}\\{OG=OE}\end{array}\right.$,
∴△DOG≌△BOE,
同理△DOH≌△BOF,
∴S四边形DHOG=S四边形BFOE,故③正确;
∵OH不一定等于OE,AH不一定等于AE,
∴△AHO不一定全等于△AEO,故④错误;
故选B.
点评 本题考查了平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的性质是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | x≠5 | B. | x≠3 | C. | x≥3 | D. | x≥3 且 x≠5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{n-1-\frac{n-1}{(n-1)^{2}+1}}$=(n-1)$\sqrt{\frac{n-1}{(n-1)^{2}+1}}$ | B. | $\sqrt{n-\frac{n}{{n}^{2}-1}}=n\sqrt{\frac{n}{{n}^{2}-1}}$ | ||
C. | $\sqrt{n+1-\frac{n+1}{(n+1)^{2}+1}}$=(n+1)$\sqrt{\frac{n+1}{(n+1)^{2}+1}}$ | D. | $\sqrt{n-\frac{n}{{n}^{2}+1}}=n\sqrt{\frac{n}{{n}^{2}+1}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com