【题目】在一个不透明的盒子中装有3个形状大小完全一样的小球,上面分别有标号1,2,-1,用树状图或列表的方法解决下列问题:
(1)将球搅匀,从盒中一次取出两个球,求其两标号互为相反数的概率。
(2)将球搅匀,摸出一个球将其标号记为k,放回后搅匀后再摸出一个球,将其标号记为b.求直线y=kx+b不经过第三象限的概率。
【答案】P(互为相反数)=;
(2)列表见解析,P(不经过第三象限)=
【解析】分析:(1)列表得到所有可能的结果即可求出两标号互为相反数的概率;
(2)列表得到所有可能的结果,要注意是不放回事件,即可求出一次函数y=kx+b的图象不经过第三象限的概率.
本题解析:(1)列表得:
解:(1)列表得:
(2,1) | (-1,1) | |
(1,2) | (-1,2) | |
(1,-1) | (2,-1) |
一共有6种情况,两次取出小球上的数字两标号互为相反数的情况有2种,
所以两标号互为相反数的概率=;
2)列表得:
b k 结果 | 1 | -1 | 2 |
1 | y=x+1 | y=x-1 | y=x+2 |
-1 | y=-x+1 | y=-x-1 | y=-x+2 |
2 | y=2x+1 | y=2x-1 | y=2x+2 |
一共有9种情况,其中一次函数y=kx+b的图象不经过第三象限的情况2种,所以其概率=,
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A( ,0),B(0,2),则点B2016的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB=90°,是锐角,ON平分,OM平分∠AOB.
(1)如图1若=30°,求的度数?
(2)若射线OC绕着点O运动到∠AOB的内部(如图2),在(1)的条件下求的度数;
(3)若∠AOB=(90°≤<180°),= (0°<<90°),请用含有的式子直接表示上述两种情况的度数.
【答案】(1)60°;(2)30°;(3)①∠MON=(+),;②∠MON=(-).
【解析】试题分析:(1)由于∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,所以可以求得∠MOB和∠NOB的度数,进而求得∠MON的度数;(2)类比(1)的方法求解即可;(3)结合(1)(2)题的计算方法求解即可.
试题解析:
(1)∵OM平分∠AOB,ON平分∠BOC,
∴∠BOM=∠AOB,∠BON=∠BOC.
∵∠AOB=90°,∠BOC=30°,
∴∠BOM=×90°=45°,∠BON=×30°=15°,
∴∠MON=∠BOM+∠BON=45°+15°=60°.
(2)由(1)可知:∠BOM=45°,∠BON=15°,
∴∠MON=∠BOM-∠BON=45°-15°=30°.
(3)①∠MON=(+),②∠MON=(-).
点睛:本题主要考查学生角平分线的定义及角的计算的理解和掌握,在解决角与角之间的关系时,要充分利用已知条件和图中的隐含条件.
【题型】解答题
【结束】
27
【题目】(1)已知线段AB=8cm,在线段AB上有一点C,且BC=4cm,M为线段AC的中点.
①求线段AM的长?
②若点C在线段AB的延长线上,AM的长度又是多少呢?
(2)如图,AD=DB,E是BC的中点,BE=AC=2cm,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2 , 以OA2为直角边作等腰Rt△OA2A3 , …则OA5的长度为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)阅读理解:实数, ,∵,∴,即。若(为定值),则,当且仅当时等式成立,即时, ,∴当时, 取得 值(填“最大”或“最小”)。
(2)理解应用:函数,当x= 时, 。
(3)拓展应用:如图,双曲线经过矩形OABC的对角线交点P,求矩形OABC的最小周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=8,CF=6,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=8,CF=6,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com