精英家教网 > 初中数学 > 题目详情

【题目】如图,在一笔直的海岸线上有AB两个观测点,BA的正东方向,AB4km.从A测得灯塔C在北偏东53°方向上,从B测得灯塔C在北偏西45°方向上,求灯塔C与观测点A的距离(精确到0.1km)(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75sin53°≈0.80cos53°≈0.60tan53°≈1.33)

【答案】灯塔C与观测点A的距离为2.9km

【解析】

如图,过点CCDAB,构建直角ACD和直角BCD.通过解RtADC得到AD=ACcos37°CD=ACsin37°,通过解RtBDC得到BD=CD.所以由AB=AD+DB来求AC的长度.

解:如图,作CDAB,垂足为D

由题意可知:∠CAB90°53°37°

CBA90°45°45°

∴在RtADC中,

cosCAB ,即ADACcos37°

sinCAB,即CDACsin37°

RtBDC中,tanCBA,即BDCD

ABAD+DB

ACcos37°+ACsin37°4

AC≈2.9km

答:灯塔C与观测点A的距离为2.9km

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A03)、B34)、C22)(正方形网格中每个小正方形的边长是一个单位长度).

1ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是

2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2ABC位似,且位似比为21,点C2的坐标是 ;(画出图形)

3A2B2C2的面积是 平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】河上有一座桥孔为抛物线形的拱桥(如图 ),水面宽 时,水面离桥孔顶部 ,因降暴雨水面上升

(1)建立适当的坐标系,并求暴雨后水面的宽;(结果保留根号)

(2)一艘装满物资的小船,露出水面的部分高为 ,宽 (横断面如图 所示),暴雨后这艘船能从这座拱桥下通过吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y1ax+b的图象与反比例函数y2的图象交于点A(12)B(2m)

(1)求一次函数和反比例函数的表达式;

(2)请直接写出y1≥y2x的取值范围;

(3)过点BBEx轴,ADBE于点D,点C是直线BE上一点,若∠DAC30°,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).

(1)请画出△ABC绕O点逆时针旋转90°得到△A1B1C1,请画出△A1B1C1

(2)在x轴上求作一点P,使△PA1C1的周长最小,并直接写出P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016广西贺州市)如图,将线段AB绕点O顺时针旋转90°得到线段AB,那么A(﹣2,5)的对应点A的坐标是(  )

A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果中的牛油果和桔子的维生素含量很高,因此深受人们喜爱,农夫果园水果商家11月份购进了第一批牛油果和桔子共300千克,已知牛油果进价每千克15元,售价每千克30元,桔子进价每千克5元,售价每千克10元.

(1)若这批牛油果和桔子全部销售完获利不低于3500元,则牛油果至少购进多少千克?

(2)第一批牛油果和桔子很快售完,于是商家决定购进第二批牛油果和桔子,牛油果和桔子的进价不变,牛油果售价比第一批上涨a%(其中a为正整数),桔子售价比第一批上涨2a%;销量与(1)中获得最低利润时的销量相比,牛油果的销量下降a%,桔子的销量保持不变,结果第二批中已经卖掉的牛油果和桔子的销售总额比(1)中第一批牛油果和桔子销售完后对应最低销售总额增加了2%,求正整数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线x轴交于AB两点,与y轴交于点C,顶点为D,连接BC

G是直线BC上方抛物线上一动点不与BC重合,过点Gy轴的平行线交直线BC于点E,作于点F,点MN是线段BC上两个动点,且,连接DM的周长最大时,求的最小值;

如图2,连接BD,点P是线段BD的中点,点Q是线段BC上一动点,连接DQ,将沿PQ翻折,且线段的中点恰好落在线段BQ上,将绕点O逆时针旋转得到,点T为坐标平面内一点,当以点QT为顶点的四边形是平行四边形时,求点T的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.

(1)l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;

(2)当直线lAD边有公共点时,求t的取值范围.

查看答案和解析>>

同步练习册答案