【题目】如图,已知直线与抛物线相交于,两点,抛物线交轴于点,交轴正半轴于点,抛物线的顶点为.
(1)求抛物线的解析式;
(2)设点为直线下方的抛物线上一动点,当的面积最大时,求的面积及点的坐标;
(3)若点为轴上一动点,点在抛物线上且位于其对称轴右侧,当与相似时,求点的坐标.
【答案】(1)y=;(2),;(3)或或或
【解析】
(1)将点代入中求出点B坐标,将点A,B,C坐标代入中求解即可;
(2)如图所示作辅助线,设点P,点E,表达出EP的长度,将△ABP分割成两个三角形进行计算,再利用二次函数的性质求最大值即可;
(3)通过坐标得出△MAD是等腰直角三角形,从而判断也是等腰直角三角形,再对进行分类讨论.
解:(1)将点代入中得,
∴点,
将点、、代入中得
,解得:,
∴
(2)如图①,过点P作EP⊥x轴,交AB于点E,则设点P,点E,
∴EP=,
∴
∵,开口向下,
∴当时,最大,
此时P
(3)在中,令y=0得,
解得,
∴点D(3,0)
又∵M(1,-2)
∴AD=4,AM=DM=,
∵
∴△MAD是等腰直角三角形,
若与相似,则也是等腰直角三角形,
有以下情况:
①当∠MQN=90°,且点N与点D重合时,如下图所示,满足要求,此时N(3,0)
②当∠MQN=90°,点N在x轴上方时,如下图所示,作NF⊥x轴,ME⊥于x轴,
则△NFQ≌△QEM(AAS),
∴EM=FQ=2,EQ=NF
设 ( ),则
∴EQ=t+2-1=t+1
∴
解得:,(舍去),
∴N
③当∠QMN=90°时, △与重合,N(3,0),
④当∠QNM=90°时,且点N在x轴上方时,如图所示作NH⊥x轴,NF⊥直线x=1
则△QHN≌△MFN,
∴FN=NH
设,则,
∴
解得:(舍去)
此时N
⑤当∠QNM=90°时,且点N在x轴下方时,如图所示作NP⊥x轴,NG⊥直线x=1,
则△QPN≌△NGM
∴PN=GN
设,则, ,
∴
解得(舍去)
此时N
综上所述,或或或.
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD中,∠B=60°,点E在边BC上,∠BAE=25°,把线段AE绕点A逆时针方向旋转,使点E落在边CD上,那么旋转角的度数为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图1,△ABC中,AB=a,∠ACB=α.如何用直尺和圆规作出点P,均使得∠APB=α?(不需解答)
尝试:如图2,△ABC中,AC=BC,∠ACB=90°.
(1)请用直角三角尺(仅可画直角或直线)在图2中画出一个点P,使得∠APB=45°
(2)如图3,若AC=BC=,以点A为原点,直线AB为x轴,过点A垂直于AB的直线为y轴建立平面直角坐标系,直线y=(b≥0)交x轴于点M,交y轴与点N.
①当b=7+时,请仅用圆规在射线MN上作出点P,使得∠APB=45°;
②请直接写出射线MN上使得∠APB=45°或∠APB=135°时点P的个数及相应的b的取值范围;
③应用:如图4,△ABC中,AB=a,∠ACB=α,请用直尺和圆规作出点P,使得∠APB=α,且AP+BP最大,请简要说明理由.(不写作法,保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,为坐标原点,的边垂直于轴、垂足为点,反比例函数的图象经过的中点、且与相交于点.经过、两点的一次函数解析式为,若点的坐标为,.且.
(1)求反比例函数的解析式;
(2)在直线上有一点,的面积等于.求满足条件的点的坐标;
(3)请观察图象直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了元.
(1)填表:
每天的销售量/台 | 每台销售利润/元 | |
降价前 | 8 | 400 |
降价后 |
(2)商场为使这种冰箱平均每天的销售利润达到最大时,则每台冰箱的实际售价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个锐角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”小明作图的依据是 .
(2)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,则作射线OP即为所求.由作法得△OCP≌△ODP的根据是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.
(1)求一次函数的表达式;
(2)求△AOB的面积;
(3)写出不等式kx+b>﹣的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.
(1)判断直线l与⊙O的位置关系,并说明理由;
(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
(3)在(2)的条件下,若DE=4,DF=3,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com