精英家教网 > 初中数学 > 题目详情
11.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能(  )
A.B.C.D.

分析 由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.

解答 解:∵在一次函数y=kx+b中k+b=0,
∴y=kx+b的图象在一、三、四象限或一、二、四象限.
故选A.

点评 本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.张华同学和父母一起到距离家200公里的景区旅游.出发前,汽车油箱内储油45升;当行驶120公里时,发现油箱剩余油量为33升;已知油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?答:能(填:能或不能)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.阅读材料,解决问题:
材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论;末n位能被5n整除的数,本身必能被5n整除,反过来,末n位不能被5n整除的数,本身也不可能被5n整除,例如判断992250能否被25、625整除时,可按下列步骤计算:
∵25=52,50÷25=2为整数,∴992250能被25整除
∵625=54,2250÷625=3.6不为整数,∴992250不能被625整除
材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的竖直分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能
(1)若$\overline{6m2}$这个三位数能被11整除,则m=8;在该三位数末尾加上和为8的两个数字,让其成为一个五位数,该五位数仍能被11整除,求这个五位数
(2)若$\overline{5abcde}$这个六位数,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,反比例函数y1=$\frac{k}{x}$(0<k<3,x>0)与y2=$\frac{3}{x}$(x>0)的图象如图所示,反比例函数y1的图象上有一点A,其横坐标为a,过点A作x轴的平行线交反比例函数y2的图象于点B,连接AO、BO,若△ABO的面积为S,则S关于a的大致函数图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为抵制乐天,吸引顾客,某商场进行一个有奖销售的促销活动,设立了一个可以自由转动的转盘,并规定,顾客购物200元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:
转动转盘的次数n1002004005008001000
落在“可乐”区域的次数m72142278355b701
落在“可乐”区域的频率$\frac{m}{n}$0.72 0.71 0.695 0.7050.701 
(1)计算上述表格中a、b的值.a=0.71,b=564;
(2)请估计当n很大时,落在“可乐”区域的频率将会接近0.7;假如你去转动该转盘一次,你获得“可乐”的概率约是0.7;(结果全部精确到0.1)
(3)在该转盘中,表示“电吹风”区域的扇形的圆心角a约是多少度?(结果精确到1°)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=$\sqrt{2}$AE2;④∠DFE=2∠DAC;⑤若连接CH,则CH∥EF,其中正确的个数为(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.“爱心是人间真情所在”!现用“?”定义一种运算,对任意实数m、n和抛物线y=ax2,当y=ax2?(m,n)后都可得到y=a(x-m)2+n.当y=x2?(m,n)后得到了新函数的图象(如图所示),则nm=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,小丽从A点出发前进6m,向右转40°,再前进6m,又右转40°,…,这样一直走下去,当她第一次回到出发点A时,一共走了54m.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,4块安全相同的长方形围成一个正方形,图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的式子是(  )
A.(a+b)(a-b)=a2-b2B.(a+b)2-(a-b)2=2abC.(a+b)2-(a-b)2=4abD.(a-b)2+2ab=a2+b2

查看答案和解析>>

同步练习册答案