精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,AD=3,CD=5,BC=10,梯形的高为4,动点M从点B出发沿线段BC以每秒2个单位长度向终点C运动;动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒

(1)直接写出梯形ABCD的中位线长;

(2)当MN∥AB时,求t的值;

(3)试探究:t为何值时,使得MC=MN.


       解:(1)∵AD=3,BC=10,

∴梯形ABCD的中位线长为:(3+10)÷2=6.5;

(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.

∵MN∥AB,

∴MN∥DG,

∴BG=AD=3.

∴GC=10﹣3=7.

由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.

∵DG∥MN,

∴△MNC∽△GDC.

=

=

解得,t=

(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.

∵∠C=∠C,∠MFC=∠DHC=90°,

∴△MFC∽△DHC,

=

=

解得:t=

综上所述,t=时,MC=MN.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图所示的几何体的俯视图是(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知,如图,在△ABC中,M,N分别是AB,AC的中点且MN=5,则BC为.

查看答案和解析>>

科目:初中数学 来源: 题型:


查看答案和解析>>

科目:初中数学 来源: 题型:


已知关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的一个根是0

(1)求m的值;

(2)求方程的另一根.

查看答案和解析>>

科目:初中数学 来源: 题型:


,则=()

      A.                           B.                           C.                           D.  

查看答案和解析>>

科目:初中数学 来源: 题型:


已知:m、n为两个连续的整数,且m<<n,则m+n=.

查看答案和解析>>

科目:初中数学 来源: 题型:


在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.

(Ⅰ)若点M的坐标为(1,﹣1),

①当点F的坐标为(1,1)时,如图,求点P的坐标;

②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.

(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

查看答案和解析>>

科目:初中数学 来源: 题型:


x2=3x                  

查看答案和解析>>

同步练习册答案