【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x-1)2-4,AB为半圆的直径,求这个“果圆”被y轴截得的弦CD的长 .
【答案】
【解析】连接AC,BC,
∵抛物线的解析式为y=(x-1)2-4,
∴点D的坐标为(0,3),
∴OD的长为3,
设y=0,则0=(x-1)2-4,
解得:x=1或3,
∴A(1,0),B(3,0)
∴AO=1,BO=3,
∵AB为半圆的直径,
∴∠ACB=90°,
∵CO⊥AB,
∴CO2=AOBO=3,
∴CO= ,
∴CD=CO+OD=3+ ,
所以答案是:3+ .
【考点精析】利用二次函数的性质和抛物线与坐标轴的交点对题目进行判断即可得到答案,需要熟知增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S,若AQ=PQ,PR=PS,下面三个结沦:①AS=AR:②QP∥AR;③△BRP≌△CSP.其中正确的是( )
A. ①③ B. ②③ C. ①② D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,是某学校的平面简图,以学校大门位置为坐标原点建立平面直角坐标系.写出图中教学楼、图书馆、体育馆、实验楼、学生公寓位置的坐标(网格小正方形的边长记为1个长度单位).
教学楼:_____________;
图书馆:_____________;
体育馆:_____________;
实验楼:_____________;
学生公寓:_____________;
(2)点在坐标系中的位置如图所示,三角形的面积为
①三角形三个顶点的坐标分别为:(____,____),(____,_____),(__,__);
②点是一动点,若三角形面积等于三角形面积.求点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,不正确的是( )
A.垂直平分弦的直线经过圆心
B.平分弦的直径一定垂直于弦
C.平行弦所夹的两条弧相等
D.垂直于弦的直径必平分弦所对的弧
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线OC、BC的函数关系式分别为y=x和y=﹣2x+b,且交点C的横坐标为2,动点P(x,0)在线段OB上移动(0<x<3).
(1)求点C的坐标和b;
(2)若点A(0,1),当x为何值时,AP+CP的值最小;
(3)过点P作直线EF⊥x轴,分别交直线OC、BC于点E、F.
①若EF=3,求点P的坐标.
②设△OBC中位于直线EF左侧部分的面积为s,请写出s与x之间的函数关系式,并写出自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,客轮沿折线A—B—C从A点出发经过B点再到C点匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批货物送达客轮,两船同时起航,并同时到达折线A—B—C上的某点E处,已知AB=BC=200海里,∠ABC=90°,客轮的速度是货轮速度的2倍.
(1)选择题:两船相遇之处E点( )
A.在线段AB上
B.在线段BC上
C.可能在线段AB上,也可能在线段BC上
(2)货轮从出发到两船相遇共航行了多少海里?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知网格上最小的正方形的边长为1.
(1)分别写出A,B,C三点的坐标;
(2)作△ABC关于y轴的对称图形△A′B′C′(不写作法),想一想:关于y轴对称的两个点之间有什么关系?
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC、BD交于点O,AC⊥BC,且ABCD的周长为36,△OCD的周长比△OBC的周长大2.
(1)求BC,CD的长;
(2)求ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的有( )
①同位角相等;
②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;
③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;
④同一平面内两条直线的位置关系可能是平行或垂直;
⑤有公共顶点并且相等的角是对顶角.
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com