精英家教网 > 初中数学 > 题目详情
14.如图所示,△ABC和△DEF都是直角三角形,其中∠A=∠D=α,∠C=∠F=90°,则$\frac{BC}{AB}$=$\frac{EF}{DE}$成立吗?为什么?

分析 由∠A=∠D=α,∠C=∠F=90°,可证得△ABC∽△DEF,然后由相似三角形的对应边成比例,证得结论.

解答 解:成立.
理由:∵∠A=∠D=α,∠C=∠F=90°,
∴△ABC∽△DEF,
∴$\frac{AB}{DE}$=$\frac{BC}{EF}$,
∴$\frac{BC}{AB}$=$\frac{EF}{DE}$.

点评 此题考查了相似三角形的判定与性质.注意证得△ABC∽△DEF是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,矩形的面积为10,如果矩形的长为x,宽为y,对角线为d,周长为l,那么你能获得关于这些量的哪些函数?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,DE∥AB,△ADE∽△ABC,且相似比为$\frac{1}{3}$,若AD=3cm,AE=2cm,DE=4cm,求△ABC三边之和.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知函数y=y1+y2,其中y1是关于x的正比例函数,y2是关于x的反比例函数,且当x=2时,y=8;当x=4时,y=13,试确定y与x的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.甲、乙两个物流公司分别在A、B两地之间进行货物交换,C地为两车的货物中转站,假设A、B、C三地在同一条直线上,甲车以120km/h的速度从A地出发赶往C地,乙车从B地出发也赶往C地,两车同时出发,在C地利用一段时间交换货物,然后各自按原速返回自己的出发地,假设两车在行驶过程中各自速度保持不变,设两车行驶的时间为x(h),两车的距离为y(km),图中的折线表示y与x之间的函数关系.
(1)A、B两地的距离为400km;
(2)求乙的速度;
(3)求出线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
(4)直接写出两车相距50km时的行驶时间.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,△ABC中,E是AB上一点,且AE:EB=3:4,过点E作ED∥BC,交AC于点D,则△AED与四边形BCDE的面积比是9:40.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.
解:∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2=∠DFE(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∠B=∠3(已知)
∴∠B=∠ADE(等量代换)
∴DE∥BC(同位角相等,两直线平行)
∴∠C=∠AED(两直线平行,同位角相等).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的角平分线,过点O作OE∥AB,OF∥AC,交边BC于点E、F,如果BC=10,那么C△OEF等于10.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若a+b=0,则a、b两个数(  )
A.都是0B.至少有一个是0C.异号D.互为相反数

查看答案和解析>>

同步练习册答案