精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知△ABC的两边AB、AC的中点分别为M、N.
(1)线段MN是△ABC的什么线?
(2)求证:MN∥BC,且MN=
12
BC.
分析:(1)根据三角形的中位线是连接三角形两边中点的线段,知线段MN叫△ABC的中位线;
(2)延长MN到D,使ND=MN,连接MC,CD,DA.根据平行线的判定和性质证明结论.
解答:(1)解:线段MN叫△ABC的中位线.

(2)证明:延长MN到D,使ND=MN,连接MC,CD,DA.精英家教网
∴AN=NC,MN=ND,
∴四边形AMCD为平行四边形.
∴CD∥MA,CD=MA.
又BM=MA,
∴BM∥CD,BM=CD.
∴四边形BCDM为平行四边形.
∴MD∥BC,MD=BC,
而N为MD中点,
∴MN∥BC,且MN=
1
2
BC
点评:此题考查了三角形中位线的概念和三角形中位线定理的证明.
数学不仅要知其然,还要知其所以然,所以对每一个定理的证明过程都要非常熟悉.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的面积S△ABC=1.
在图1中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,则S△A1B1C1=
1
4

在图2中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,则S△A2B2C2=
1
3

在图3中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,则S△A3B3C3=
7
16

按此规律,若
AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,S△A8B8C8=
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC的面积为4,且AB=AC,现将△ABC沿CA方向平移CA的长度,得到△EFA.
(1)判断AF与BE的位置关系,并说明理由;
(2)若∠BEC=15°,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州二模)如图,已知△ABC的面积是2平方厘米,△BCD的面积是3平方厘米,△CDE的面积是3平方厘米,△DEF的面积是4平方厘米,△EFG的面积是3平方厘米,△FGH的面积是5平方厘米,那么,△EFH的面积是
4
4
 平方厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•孝感模拟)如图,已知△ABC的三个顶点的坐标分别为A(-2,2)、B(-5,0)、C(-1,0).
(1)请直接写出点A关于y轴对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°得到△A1B1C1,再将△A1B1C1以C1为位似中心,放大2倍得到△A2B2C1,请画出△A1B1C1和△A2B2C1,并写出一个点A2的坐标.(只画一个△A2B2C1即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点的坐标分别是A(-7,1),B(-3,3),C(-2,6).
(1)求作一个三角形,使它与△ABC关于y轴对称;
(2)写出(1)中所作的三角形的三个顶点的坐标.

查看答案和解析>>

同步练习册答案