精英家教网 > 初中数学 > 题目详情
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以45元的价格销售,平均每天销售105箱;每箱以50元的价格销售,平均每天销售90箱.假定每天销售量y(箱)与销售价x(元/箱)之间满足一次函数关系式.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
分析:(1)利用每天销售量y(箱)与销售价x(元/箱)之间满足一次函数关系式,利用待定系数法求出一次函数解析式即可;
(2)利用该批发商平均每天的销售利润w(元)=每箱的销售利润×每天的销售量得出即可;
(3)根据题中所给的自变量的取值得到二次的最值问题即可.
解答:解:(1)设y=kx+b,
把已知(45,105),(50,90)代入得,
45k+b=105
50k+b=90

解得:
k=-3
b=240

故平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式为:y=-3x+240;

(2)∵水果批发商销售每箱进价为40元的苹果,销售价x元/箱,
∴该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式为:
W=(x-40)(-3x+240)=-3x2+360x-9600.

(3)W=-3x2+360x-9600=-3(x-60)2+1200,
∵a=-3<0,∴抛物线开口向下.
又∵对称轴为x=60,∴当x<60,W随x的增大而增大,
由于50≤x≤55,∴当x=55时,W的最大值为1125元.
∴当每箱苹果的销售价为55元时,可以获得最大利润,为1125元.
点评:此题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常用函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-
b
2a
时取得.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天可销售90箱,价格每提高1元,平均每天少销售3箱.设销售价为x(元/箱).
(1)平均每天销售量是多少箱?(用含x的代数式表示)
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
求该批发商平均每天的销售利润y(元)与销售价x(元/箱)之间的函数关系式.当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

同步练习册答案