【题目】如图,在中,,点是边上的动点,连接,以为斜边在的下方作等腰直角三角形.
(1)填空:的面积等于 ;
(2)连接,求证:是的平分线;
(3)点在边上,且, 当从点出发运动至点停止时,求点相应的运动路程.
【答案】(1);(2)证明见解析;(3)
【解析】
(1)根据直角三角形的面积计算公式直接计算可得;
(2)如图所示作出辅助线,证明△AEM≌△DEN(AAS),得到ME=NE,即可利用角平分线的判定证明;
(3)由(2)可知点E在∠ACB的平分线上,当点D向点B运动时,点E的路径为一条直线,再根据全等三角形的性质得出CN=,根据CD的长度计算出CE的长度即可.
解:(1)
∴,
故答案为:
(2)连接CE,过点E作EM⊥AC于点M,作EN⊥BC于点N,
∴∠EMA=∠END=90°,
又∵∠ACB=90°,
∴∠MEN=90°,
∴∠MED+∠DEN=90°,
∵△ADE是等腰直角三角形
∴∠AED=90°,AE=DE
∴∠AEM+∠MED=90°,
∴∠AEM=∠DEN
∴在△AEM与△DEN中,
∠EMA=∠END=90°,∠AEM=∠DEN,AE=DE
∴△AEM≌△DEN(AAS)
∴ME=NE
∴点E在∠ACB的平分线上,
即是的平分线
(3)由(2)可知,点E在∠ACB的平分线上,
∴当点D向点B运动时,点E的路径为一条直线,
∵△AEM≌△DEN
∴AM=DN,
即AC-CM=CN-CD
在Rt△CME与Rt△CNE中,CE=CE,ME=NE,
∴Rt△CME≌Rt△CNE(HL)
∴CM=CN
∴CN=,
又∵∠MCE=∠NCE=45°,∠CME=90°,
∴CE=,
当AC=3,CD=CO=1时,
CE=
当AC=3,CD=CB=7时,
CE=
∴点E的运动路程为:,
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF.不能添加的一组条件是( )
A. ∠B=∠E,BC=EF B. ∠A=∠D,BC=EF
C. ∠A=∠D,∠B=∠E D. BC=EF,AC=DF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=15.sin∠A=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.
(1)求证;四边形PBEC是平行四边形;
(2)填空:
①当AP的值为 时,四边形PBEC是矩形;
②当AP的值为 时,四边形PBEC是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以下信息解答问题:
(1)此次共调查了多少人?
(2)求“年龄岁”在扇形统计图中所占圆心角的度数;
(3)请将条形统计图补充完整.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,直线l与⊙O相切于点C且,弦CD交AB于E,BF⊥l,垂足为F,BF交⊙O于G.
(1)求证:CE2=FGFB;
(2)若tan∠CBF=,AE=3,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:
(1)操作发现:如图1,点D是等边△ABC边BA上一动点(点D与点B不重合),连结DC,以DC为边在CD上方作等边△DCE,连结AE.你能发现线段AE与BD之间的数量关系吗? 证明你发现的结论.
(2)类比猜想:如图2,当动点D运动至等边△ABC边BA的延长线上时,其余条件不变,猜想:(1)中的结论是否成立,不用说明理由.
(3)拓展探究:如图3,当动点D在等边△ABC边BA上运动时(点D与点B不重合),连结 DC,以DC为边在CD上方和下方分别作等边△DCE和等边△DCE′,连结AE、BE′,探究:AE、BE′与AB有何数量关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点A(2,0)的两条直线,分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D、E分别是AB和BC上的点.把△ABC沿着直线DE折叠,顶点B对应点是点B′
(1)如图1,点B′恰好落在线段AC的中点处,求CE的长;
(2)如图2,点B′落在线段AC上,当BD=BE时,求B′C的长;
(3)如图3,E是BC的中点,直接写出AB′的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com