精英家教网 > 初中数学 > 题目详情
(2000•荆门)如图,以Rt△ABC的直角边BC为直径画半圆,交斜边AB于D,若AC=,BD=,求图中阴影部分面积(π取3.14,取1.73,结果精到0.1)

【答案】分析:连接CD、OD.
阴影部分的面积即为三角形ACD的面积加上三角形OCD的面积减去扇形OCD的面积.
根据切割线定理求得AD的长,进而求得BC、AC的长和扇形的圆心角的度数.
解答:解:连接CD、OD.
∵AC⊥BC,
∴AC是⊙O的切线,
∴AC2=AD•AB.
设AD=x,则AB=x+
则(2=x(x),
解之,得x1=,x2=(舍去).
∴AD=,AB=
∠B=3O°,BC=2,CD=1.
S阴影=S△ACD+S△OCD-S扇形OCD
==
=0.72-0.52=0.2.
点评:能够把不规则图形的面积转化为规则图形的面积.
熟练运用切割线定理、扇形的面积公式和三角形的面积公式.
练习册系列答案
相关习题

科目:初中数学 来源:2000年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:解答题

(2000•荆门)如图在直角坐标系xOy中,A、B是x轴上两点,以AB为直径的圆与y轴交于点C,设A、B、C的抛物线的解析式为y=且方程=0的两根的倒数和为
(1)求n的值;
(2)求m的值和A、B、C三点的坐标;
(3)点P、Q分别从A、O两点同时出发,以相同的速度沿AB、OC向B、C运动,连接PQ并延长,与BC交于点M,设AP=k,问是否存在这样的k值,使以P、B、M为顶点的三角形与△ABC相似?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2000•荆门)如图在直角坐标系xOy中,A、B是x轴上两点,以AB为直径的圆与y轴交于点C,设A、B、C的抛物线的解析式为y=且方程=0的两根的倒数和为
(1)求n的值;
(2)求m的值和A、B、C三点的坐标;
(3)点P、Q分别从A、O两点同时出发,以相同的速度沿AB、OC向B、C运动,连接PQ并延长,与BC交于点M,设AP=k,问是否存在这样的k值,使以P、B、M为顶点的三角形与△ABC相似?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年湖北省荆门市中考数学试卷(解析版) 题型:解答题

(2000•荆门)如图在直角坐标系xOy中,A、B是x轴上两点,以AB为直径的圆与y轴交于点C,设A、B、C的抛物线的解析式为y=且方程=0的两根的倒数和为
(1)求n的值;
(2)求m的值和A、B、C三点的坐标;
(3)点P、Q分别从A、O两点同时出发,以相同的速度沿AB、OC向B、C运动,连接PQ并延长,与BC交于点M,设AP=k,问是否存在这样的k值,使以P、B、M为顶点的三角形与△ABC相似?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年湖北省荆门市中考数学试卷(解析版) 题型:选择题

(2000•荆门)如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为( )

A.1
B.
C.
D.

查看答案和解析>>

同步练习册答案