精英家教网 > 初中数学 > 题目详情
(1)如图1,正方形ABCD中,E,F,GH分别为四条边上的点,并且AE=BF=CG=DH.求证:四边形EFGH为正方形.
(2)如图2,有一块边长1米的正方形钢板,被裁去长为
1
4
米、宽为
1
6
米的矩形两角,现要将剩余部分重新裁成一正方形,使其四个顶点在原钢板边缘上,且P点在裁下的正方形一边上,问如何剪裁使得该正方形面积最大,最大面积是多少?
(1)证明:∵AB=BC=CD=DA,AE=BF=CG=DH,
∴EB=FC=GD=HA,
∵∠A=∠B=∠C=∠D=90°,
∴△AEH≌△BFE≌△CGF≌△DHG,(2分)
∴HE=EF=FG=GH,∠1=∠2,(3分)
∴四边形EFGH是菱形,(4分)
∵∠1+∠3=90°,
∴∠2+∠3=90°,
∴∠4=90°,
∴四边形EFGH是正方形;(5分)

(2)如图,设原正方形为ABCD,正方形EFGH是要裁下的正方形,且EH过点P.
设AH=x,则AE=1-x.
∵MPAH,
1
6
x
=
1-x-
1
4
1-x
,(6分)
整理得12x2-11x+2=0,
解得x1=
1
4
x2=
2
3
,(7分)
x=
1
4
时,S正方形EFGH=(
1
4
)2+(1-
1
4
)2=
5
8

x=
2
3
时,S正方形EFGH=(
2
3
)2+(1-
2
3
)2=
5
9
5
8

∴当BE=DG=
1
4
米,BF=DH=
3
4
米时,裁下正方形面积最大,面积为
5
8
2.(9分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知,如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,且BE=DF,则∠CEF=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.

(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC-CD.
(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动,顶点D在y轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.
(1)当OA=OD时,点D的坐标为______,∠POA=______°;
(2)当OA<OD时,求证:OP平分∠DOA;
(3)设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.求证:
①△ABG≌△AFG;
②BG=GC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F,如果⊙O的半径为
2
,则O点到BE的距离OM=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠CFA=(  )
A.30°B.45°C.22.5°D.135°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知正方形ABCD的边长为m,△BPC是等边三角形,则△CDP的面积为______(用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形ABCD,E是BC中点,∠AEF=90°,∠1=∠2
(1)线段AE与EF的数量关系为______
(2)在线段BC上,若E不是BC中点,上述关系是否成立?若成立,加以证明;若不成立,说明理由?

查看答案和解析>>

同步练习册答案