精英家教网 > 初中数学 > 题目详情
今年,6月12日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华的问题.
(1)设定价为x元,利润为y元,则销售量为:(500-
x-3
0.1
×10),
由题意得,y=(x-2)(500-
x-3
0.1
×10)
=-100x2+1000x-1600
=-100(x-5)2+900,
当y=800时,
-100(x-5)2+900=800,
解得:x=4或x=6,
∵售价不能超过进价的240%,
∴x≤2×240%,
即x≤4.8,
故x=4,
即当定价为4元时,能实现每天800元的销售利润;

(2)由(1)得y=-100(x-5)2+900,
∵-100<0,
∴函数图象开口向下,且对称轴为x=5,
∵x≤4.8,
故当x=4.8时函数能取最大值,
即ymax=-100(4.8-5)2+900=896.
故800元的销售利润不是最多,当定价为4.8元时,每天的销售利润最大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-
1
2
x2+bx+c的图象经过点A(-3,-6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求二次函数的解析式;
(2)设点M为线段OC上一点,且∠MPC=∠BAC,求点M的坐标;
说明:若(2)你经历反复探索没有获得解题思路,请你在不改变点M的位置的情况下添加一个条件解答此题,此时(2)最高得分为3分.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,BC是⊙O的直径,点A在圆上,且AB=AC=4.P为AB上一点,过P作PE⊥AB分别交BC、OA于E、F.
(1)设AP=1,求△OEF的面积;
(2)设AP=a(0<a<2),△APF、△OEF的面积分别记为S1、S2
①若S1=S2,求a的值;
②若S=S1+S2,是否存在一个实数a,使S<
15
3
?若存在,求出一个a的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形OABC中,ABOC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B的坐标为(2,2
3
),∠BCO=60°,OH⊥BC,垂足为H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为ts.
(1)求OH的长;
(2)若△OPQ的面积为S(平方单位),求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

明珠大剧场座落在聊城东昌湖西岸,其上部为能够旋转的拱形钢结构,并且具有开启、闭合功能,全国独-无二,如图1.舞台顶部横剖面拱形可近似看作抛物线的一部分,其中舞台高度1.15米,台口高度13.5米,台口宽度29米,如图2.以ED所在直线为x轴,过拱顶A点且垂直于ED的直线为y轴,建立平面直角坐标系.
(1)求拱形抛物线的函数关系式;
(2)舞台大幕悬挂在长度为20米的横梁MN上,其下沿恰与舞台面接触,求大幕的高度?(精确到0.01米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EFBD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用长为100cm的铁丝做一个矩形框子.
(1)能做成矩形框的面积为800cm2吗?如果能求出长和宽,如果不能请说明理由.
(2)请说明能围成的矩形最大面积是多少?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为
5
,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.
(1)求抛物线的函数表达式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为______.

查看答案和解析>>

同步练习册答案