精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCO是平行四边形,OA2AB8,点Cx轴的正半轴上,将平行四边形ABCO绕点A顺时针旋转得到平行四边形ADEFAD恰好经过点O,点F恰好落在x轴的负半轴上.则点D的坐标是_____

【答案】3,﹣3

【解析】

根据平行四边形的性质和旋转的性质得出∠DOC60°,可以求得点D的坐标.

解:作DGOCG,如图:

由旋转可得:OAAF2,∠BAO=∠FAO

∴∠AFO=∠AOF

ABOF

∴∠BAO=∠OAF

∴∠BAO=∠AOF=∠AFO=∠FAO

∴△AFO是等边三角形,

∴∠DOC=∠AOF60°

AO2ADAB8

OD6

OGOD3DG

∴点D的坐标为(3,﹣3);

故答案为:(3,﹣3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2+bx+ca0)的顶点为A(﹣20),且经过点B(﹣59),与y轴交于点C,连接ABACBC

1)求该抛物线对应的函数表达式;

2)点P为该抛物线上点A与点B之间的一动点.

①若SPABSABC,求点P的坐标.

②如图②,过点Bx轴的垂线,垂足为D,连接AP并延长,交BD于点M.连接BP并延长,交AD于点N.试说明DNDM+DB)为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC 中,∠C=90°AC=BCAB=8,点DAB的中点,若直角MDN绕点D旋转分别交AC于点E,交BC于点F,则下列说法:①AE="CF" ②EC+CF=③DE="DF" ④△ECF的面积为一个定值,则EF的长也是一个定值,其中正确的是( )

A.①②B.①③C.①②③D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射阳县实验初中为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:

参加社区活动次数的频数、频率分布表

活动次数x

频数

频率

0x≤3

10

0.20

3x≤6

a

0.24

6x≤9

16

0.32

9x≤12

6

0.12

12x≤15

m

b

15x≤18

2

n

根据以上图表信息,解答下列问题:

1)表中a=  b=  

2)请把频数分布直方图补充完整(画图后请标注相应的数据);

3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在线段AB的同侧作射线AM和BN,若MAB与NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且ACB=60°时,有以下两个结论:

①∠APB=120°AF+BE=AB.

那么,当AMBN时:

(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;

(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+c经过A03)、B(﹣10)、D23),抛物线与x轴的另一交点为E,点P为直线AE上方抛物线上一动点,设点P的横坐标为t

1)求抛物线的表达式;

2)当t为何值时,△PAE的面积最大?并求出最大面积;

3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.

1)今年三月份甲种电脑每台售价多少元?

2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?

3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,值应是多少?此时,哪种方案对公司更有利?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学形展唱红歌比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.

1)根据图示填写下表:

班级

平均数(分)

中位数(分)

众数(分)

九(1

85

九(2

85

100

2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;

3)计算两班复赛成绩的方差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.

1)求该学校为新增电脑投资的年平均增长率;

2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?

查看答案和解析>>

同步练习册答案