精英家教网 > 初中数学 > 题目详情

【题目】某服装厂里有许多剩余的三角形边角料,找出一块△ABC,测得∠C=90°(如图),现要从这块三角形上剪出一个半圆O,做成玩具,要求:使半圆O与三角形的两边AB、AC相切,切点分别为D、C,且与BC交于点E.

(1)在图中设计出符合要求的方案示意图.(要求:尺规作图,不写作法,保留作图痕迹).

(2)RtABC中,AC=3,AB=5,连接AO,求出AO的长度.

【答案】(1)作图见解析;(2)AO

【解析】

(1)以∠A的平分线与BC的交点为圆心,以到C的距离为半径的半圆即为所求;
(2)连接OD,在Rt△ABC中,根据勾股定理得BC=4,根据切线的性质和线段的和差关系得到BD=2,设⊙O的半径为r,则OB=4-r,根据勾股定理求得半径,再在Rt△ACO中,根据勾股定理求得AO.

(1) 半圆O就是所求的图形,

(2)连接OD,

∵Rt△ABC中,AC=3,AB=5,根据勾股定理得BC=4,

由题意可知,AB是⊙O的切线,

∴∠ODB=90°,AD=AC=3,

∴BD=2,

设⊙O的半径为r,则OB=4-r,

∴r2+22=(4-r)2.

解得

在Rt△ACO中,根据勾股定理得.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ACBECD都是等腰直角三角形,∠ACB=ECD=90°DAB边上一点,且AD=2AC=BC=.

1)证明:ACE≌△BCD

2)求四边形ADCE的面积;

3)求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.

(1)求该二次函数的解析式;

(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;

(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一条宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是轴上使得∣PA—PB∣的值最大的点,Q是轴上使得QA+QB的值最小的点,则OP·OQ=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年来,为了缓减环境污染,某区加大了对煤改电的投资力度,该区居民在2015年有7500户完成煤改电,2017年有10800户完成了煤改电.

(1)求该区2015年至2017年完成煤改电户数的年平均增长率;

(2)2018年该区计划要完成煤改电的户数比2017年要有所增长,但增长率不超过15%,请求出2018年最多有多少户能完成煤改电.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)操作与探究:如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边ADE点上,折痕的一端G点在边BC上,BG=10.

①第一次折叠:当折痕的另一端点FAB边上时,如图1,求折痕GF的长;

②第二次折叠:当折痕的另一端点FAD边上时,如图2,证明四边形BGEF为菱形,并求出折痕GF的长.

(2)拓展延伸:通过操作探究发现在矩形纸片ABCD中,AB=5,AD=13.如图3所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点A′BC边上可移动的最大距离是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

反比例函数y=(k>0)第一象限内的图象如图1所示,点P、R是双曲线上不同的两点,过点P、R分别做PAy轴于点A,RCx轴于点C,两垂线交点为B.

(1)问题提出:线段PB:PABR:RC有怎样的关系?

问题解决:设点PA=n,PB=m,则点P的坐标为(n,),点R的坐标为(m+n,),AO=BC=,RC=,BR=,

BR:RC=,

PB:PA=,

PB:PA=BR:RC.

问题应用:

(2)利用上面的结论解决问题:

①如图1,如果BR=6,CR=3,AP=4,BP=   

②如图2,如果直线PR的关系式y2=﹣x+3,与x轴交于点D,与y轴交于点E,若ED=3PR,求出k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtOAB的顶点Ax轴的正半轴上.顶点B的坐标为(3),点C的坐标为(10),且∠AOB=30°P为斜边OB上的一个动点,则PA+PC的最小值为(   )

A.B.C.D.

查看答案和解析>>

同步练习册答案