精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,点A坐标为(1,1),过点A作AB⊥x轴,垂足为点B,△AOB绕点O逆时针方向旋转90°,得到△MON(如图所示),若二次函数的图象经过点A、M、O三点.
(1)求这个二次函数的解析式;
(2)如果把这个二次函数图象向右平移2个单位,得到新的二次函数图象与y轴的交点为C,求tan∠ACO的值;
(3)在(2)的条件下,设新的二次函数图象的对称轴与x轴的交点为D,点E在这条对称轴上,如果△BCO与以点B、D、E所组成的三角形相似(相似比不为1),求点E的坐标.

【答案】分析:(1)本题需先得出M点的坐标,再设出二次函数的解析式为y=ax2+bx+c,把A、M、O三点代入即可求出解析式.
(2)本题先得出图象向右平移2个单位的解析式,从而得出与y轴的交点坐标,再连接AN,即可求出tan∠ACO的值.
(3)本题需先分根据(2)的解析式得出对称轴为直线x=2,得出D点的坐标,再设出点E的坐标,这时再分两种情况进行讨论,当点E在x轴的上方时,得出,即可求出点E的坐标,当点E在x轴的下方时,同理可得出点E的坐标.
解答:解:(1)由旋转可知:点M的坐标为(-1,1),
设所求二次函数的解析式为y=ax2+bx+c
∵二次函数的图象经过点A、M、O三点,点A坐标为(1,1),


∴这个二次函数的解析式为y=x2

(2)将这个二次函数图象向右平移2个单位,
得到新的二次函数的解析式为y=(x-2)2
∴二次函数y=(x-2)2的图象与y轴的交点为C为(0,4),
由旋转可知:点N的坐标为(0,1),连接AN.
在Rt△ANC中,AN=1,CN=3,


(3)由(2)得:新的二次函数y=(x-2)2图象的对称轴为直线x=2.
根据题意:得点D的坐标为(2,0),
可设点E坐标为(2,x),∠BOC=∠BDE=90°.
如果△BCO与以点B、D、E所组成的三角形相似:
①当点E在x轴的上方时,
如果,又BD=BO=1,容易知道△BCO与△BDE全等(舍去),
如果,又BD=1,BO=1,OC=4,DE=x,


所以点E的坐标为(2,).
②当点E在x轴的下方时,
同理:可得到E的坐标为(2,-).
所以:当△BCO与以点B、D、E所组成的三角形相似(相似比不为1)时,
点E的坐标为(2,)或(2,-).
点评:本题主要考查了二次函数综合题,其中涉及到的知识点有抛物线的顶点公式和解析式的求法.在求有关动点问题时要注意分析题意分情况讨论结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案