精英家教网 > 初中数学 > 题目详情

【题目】教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边ab与斜边c满足关系式a2b2c2,称为勾股定理.

(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.

(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当a3b4时梯形ABCD的周长.

(3)如图④,在每个小正方形边长为1的方格纸中,ABC的顶点都在方格纸格点上.请在图中画出ABC的高BD,利用上面的结论,求高BD的长.

【答案】1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式;(2;(3)作出高BD如下图,BD=

【解析】

1)根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积,代入数值,即可证明;
2)由(1)中结论先求出c的值,再根据周长公式即可得出梯形ABCD的周长;
3)先根据高的定义画出BD,由(1)中结论求出AC的长,再根据ABC的面积不变列式,即可求出高BD的长.

(1)证明 由图得,×ab×4c2(ab)×(ab)

整理,得2abc2a2b22ab

a2b2c2

(2)解 ∵a3b4

c5

梯形ABCD的周长为:ac3ac4a2c4×32×522

(3)解 如图4BDABC的高.

SABCAC·BDAB×3AC5

BD.

故答案为:(1)见解析;(2)22;(3) .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交 元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.
(1)求a的值;
(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由6个正方形拼成的一个长方形,如果最小的正方形的边长为1

()能否求出拼成的长方形的面积?____(不能”)

()若能,请你写出拼成的长方形的面积;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网站策划了A、B两种上网的月收费方式:

收费方式

月使用费/元

包时上网时间/h

超时费/(元/min)

A

30

25

0.05

B

m

n

P

设每月上网学习时间为x(h)小时,方案A,B的收费金额分别为yA (元)、yB(元).
如图是yB与x之间函数关系的图象
(友情提示:若累计上网时间不超出“包时上网时间”,则只收”月使用费“;若累计上网时间不超出“包时上网时间”,则对超出部分再加收”超时费“)

(1)m=;n=p=
(2)写出yA与x之间的函数关系式.
(3)若每月上网的时间为29小时,请说明选取哪种方式能节省上网费?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.

(1)△BCD的形状为
(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;
(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)

七巧板拼图

趣题巧解

数学应用

魔方复原

66

89

86

68

66

60

80

68

66

80

90

68

(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;

(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,在数轴上,|a|表示数a到原点的距离,这是绝对值的几 何意义,进一步地,数轴上两个点AB,分别用a b 表示,那么AB两点之间的距离为AB|ab|利用此结论,回答以下问题:

(1)数轴上表示3 7 的两点之间的距离是 ,数轴上表示﹣3 和﹣7 的两 点之间的距离是 ,数轴上表示2 和﹣3 的两点之间的距离是

(2)数轴上表示x和﹣5 的两点AB之间的距离是 ,如果|AB|3,那 x的值为

(3)当代数式|x1|+|x3|取最小值时,相应的x的取值范围是多少?最小值是多少?

(4)已知点A在数轴上对应的数是a,点B在数轴上对应的数是b,且|a+4|+(b1)20,设点P在数轴上对应的数是x,当|PA||PB|2时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市上网有两种收费方案,用户可任选其一,A为计时制--1时;B为包月制--80月,此外每种上网方式都附加通讯费时.

某用户每月上网40小时,选哪种方式比较合适?

某用户每月有100元钱用于上网,选哪种方式比较合算?

请你设计一个方案,使用户能合理地选择上网方式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC≌△DEB,EAB,DEAC相交于点F.

(1)DE=8,BC=5线段AE的长为____;

(2)若∠D=35°,C=60°,求∠DBC的度数.

查看答案和解析>>

同步练习册答案