精英家教网 > 初中数学 > 题目详情

如图,点P是⊙O的弦AB上任一点(与A,B均不重合),点C在⊙O上,PC⊥OP,已知AB=8,设BP=x,PC2=y,y与x之间的函数图象大致是


  1. A.
  2. B.
  3. C.
  4. D.
A
分析:延长CP交⊙O于点D,根据PC⊥OP,则PC=PD,由相交弦定理可得:PC2=PA•PB,代入数据即可得出PC的长.
解答:延长CP交⊙O于点D,
∵PC⊥OP,
∴PC=PD,
∵PC•PD=PA•PB,
∴PC2=PA•PB,
∵AB=8,BP=x,PC2=y,
∴AP=8-x,
则y=x(8-x)=-x2+8x=-(x-4)2+16.
故该函数图象为开口向下的抛物线,且顶点为(4,16).
故选A.
点评:本题考查了动点问题的函数图象已及相交弦定理与垂径定理,难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,点O是⊙O的圆心,点A,B,C在⊙O上,∠ACB=30°,弦AB=2cm,则△OAB的周长是
6
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,线段CD是⊙O的弦,⊙O的半径是R,点A是优弧CD上的一个动点,作AB⊥CD于E(点E在线段CD上但不与点C﹑D重合),AB交⊙O于B,连接AC﹑CB﹑BD﹑DA.
(1)如图1,若AB经过圆心O,试探索AD﹑BC和R之间存在着什么样的数量关系?请用一个等式表达出来并证明你的结论.
(2)如图2﹑图3,若AB不经过圆心O时,你探索的上述结论是否依然成立?若不成立,请说明理由;若成立,请任意选一图证明.
(3)作OF⊥AD于F,试利用图1探索OF与BC之间存在着什么样的数量关系?请用一个等式表达出来(不要求证明);你探索的这个结论在图2﹑图3中依然成立吗?(只要求回答成立还是不成立,不要求写理由或证明).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•燕山区一模)如图,点P是⊙O的弦AB上任一点(与A,B均不重合),点C在⊙O上,PC⊥OP,已知AB=8,设BP=x,PC2=y,y与x之间的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O是⊙O的圆心,点A、B、C在⊙O上,∠ACB=30°,弦AB=3cm,则△ABO的周长是
9
9
cm.

查看答案和解析>>

同步练习册答案