分析 (1)原来一天可获利润=(原售价-原进价)×一天的销售量;
(2)①根据等量关系:降价后的单件利润×销售量=总利润,列方程解答;
②根据“总利润=降价后的单件利润×销售量”列出函数表达式,并运用二次函数性质解答.
解答 解:(1)(100-80)×100=2000(元);
故答案为:2000.
(2)①依题意得:
(100-80-x)(100+10x)=2160
即x2-10x+16=0
解得:x1=2,x2=8
经检验:x1=2,x2=8都是方程的解,且符合题意.
答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.
②依题意得:y=(100-80-x)(100+10x),
∴y=-10x2+100x+2000=-10(x-5)2+2250,
∵-10≤0,
∴当x=5时,商店所获利润最大.
点评 本题考查了一元二次方程和二次函数的应用,解答第②小题的关键是将实际问题转化为二次函数求解,注意配方法求二次函数最值的应用.
科目:初中数学 来源:2016-2017学年福建省泉州市泉港区2016-2017学年八年级3月教学质量检测数学试卷(解析版) 题型:单选题
若点P(, )在第二象限,则k的取值范围是( )
A. < B. <2 C. <<2 D. >2
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 点C | B. | 点F | C. | 点D | D. | 点O |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com