精英家教网 > 初中数学 > 题目详情
如图,已知PA、PB切⊙O于A、B两点,连AB,且PA,PB的长是方程x2-2mx+3=0的两根,AB=m.试求:
(1)⊙O的半径;
(2)由PA,PB,
AB
围成图形(即阴影部分)的面积.
(1)连OA,OB,
∵PA=PB,(1分)
∴△=(-2m)2-4×3=0,
∴m2=3,m>0,
∴m=
3

∴x2-2
3
x+3=0,
∴x1=x2=
3

∴PA=PB=AB=
3

∴△ABP等边三角形,
∴∠APB=60°,(3分)
∴∠APO=30°,
∵PA=
3

∴OA=1;(4分)

(2)∵∠AOP=60°,
∴∠AOB=120°,
S=S四边形OAPB-S扇形OAB
=2S△AOP-S扇形OAB
=2×
1
2
×1×
3
-
120•π•12
360

=
3
-
1
3
π.(8分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,AB是⊙O的直径,直线l交⊙O于C1、C2,AD⊥l,垂足为D.
(1)求证:AC1•AC2=AB•AD.
(2)若将直线l向上平移(如图2),交⊙O于C1、C2,使弦C1C2与直径AB相交(交点不与A、B重合),其他条件不变,请你猜想,AC1、AC2、AB、AD之间的关系,并说明理由.
(3)若将直线l平移到与⊙O相切时,切点为C,其他条件不变,请你在图3上画出变化后的图形,标好相应的字母并猜想AC、AB、AD的关系是什么?(只写出关系,不加以说明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:水平地面上有一个球,现用如下方法测量球的表面积(球的表面积公式S=4πR2),用锐角∠BAC=60°的直角三角板的斜边紧靠球面,P为切点,一条直角边AC紧靠地面,并使三角板与地面垂直,如果测得PA=1m,则球的表面积等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线l1l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是(  )
A.MN=
4
3
3
B.l1和l2的距离为2
C.若∠MON=90°,则MN与⊙O相切
D.若MN与⊙O相切,则AM=
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.
求证:∠ACB=
1
3
∠OAC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在⊙O中,弦AB与半径相等,连接OB并延长,使BC=OB.
(1)试判断直线AC与⊙O的位置关系,并证明你的结论;
(2)请你在⊙O上找到一个点D,使AD=AC(完成作图,证明你的结论),并求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB切⊙O于点B,∠A=30°,AB=2
3
,则半径OB的长为(  )
A.1B.
3
C.2D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM与于点D,交BN于点C,F是CD的中点,连接OF.
(1)求证:ODBE;
(2)猜想:OF与CD有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案