精英家教网 > 初中数学 > 题目详情
9.已知关于x的方程ax+b=0,有以下四种说法:
①若x=1是该方程的解,则a+b=0;②若a=-1,则x=b是该方程的解;
③若a≠0,则该方程的解是x=-$\frac{b}{a}$;④若a=0,b≠0,则该方程无解.
其中所有正确说法的序号是①②③④.

分析 ①把x=1代入方程即可判断;
②把a=-1代入方程即可判断;
③解方程即可作出判断;
④把a=0代入方程即可判断.

解答 解:①当x=1时,把x=1代入得a+b=0,故正确;
②当a=-1时,代入得-x+b=0,则x=b,故命题正确;
③当a≠0时,移项,得ax=-b,则x=-$\frac{b}{a}$,故命题正确;
④当a=0,把a=0代入得b=0,与b≠0相矛盾,则命题正确.
故答案是:①②③④.

点评 本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.(1)若5a+1和a-19是数m的两个不同的平方根,求m的值.
(2)如果y=$\frac{\sqrt{{x}^{2}-4}+\sqrt{4-{x}^{2}}}{x+2}$+3,试求2x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图①所示的图形像我们常见的学习用品-圆规,我们不妨把这样的图形叫做“规形图”,那么在这样一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥聪明才智,解决以下问题:
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图②,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=40°;
②如图③,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;
③如图①,∠ABD、∠ACD的10等分线分别相交于点G1、G2、…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解下列方程
(1)-4x+1=-2($\frac{1}{2}$-x)
(2)2-$\frac{3x-7}{4}=-\frac{x+7}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是(  )
A.AF=$\frac{1}{2}BC$B.四边形ACDE是矩形
C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1=134°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)$\sqrt{75}$-($\sqrt{1\frac{1}{3}}$-$\sqrt{48}$)
(2)$\sqrt{27{a}^{3}}$(a2$\sqrt{\frac{3}{a}}$-$\frac{a}{4}$$\sqrt{\frac{a}{3}}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在正方形ABCD中,E为边CD上一点,连接BE.
(1)请你在图1画出△BEM,使得△BEM与△BEC关于直线BE对称;
(2)若边AD上存在一点F,使得AF+CE=EF,请你在图2中探究∠ABF与∠CBE的数量关系并证明;
(3)在(2)的条件下,若点E为边CD的三等分点,且CE<DE,请写出求cos∠FED的思路.(可以不写出计算结果).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.点P(3a+6,3-a)在y轴上,则点P的坐标(0,5).

查看答案和解析>>

同步练习册答案