分析 延长AD到G,使得DG=AD,先证明△ADC≌△GDB,得AC=BG,证明BG=BF即可解决问题.
解答 证明:延长AD到G,使得DG=AD.
在△ADC和△GDB中,
$\left\{\begin{array}{l}AD=GD\\∠ADC=∠GDB\\ CD=BD\end{array}\right.$,
∴△ADC≌△GDB,
∴AC=BG 且∠CAD=∠G
∵AE=EF,
∴∠EFA=∠EAF,
∴∠G=∠EFA,
∵∠EFA=∠BFG,
∴∠G=∠BFG,
∴BG=BF,
∵AC=BG,
∴BF=AC.
点评 本题考查全等三角形的判定和性质,三角形中线的性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | k>0,b>0 | B. | k<0,b>0 | C. | k<0,b<0 | D. | k<0,b>0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com