精英家教网 > 初中数学 > 题目详情

,则关于的一元二次方程必有一个定根,它是_______.

 

【答案】

1

【解析】由,得,则原方程可化为

解得

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=x2+bx+c的对称轴为直线x=1,且图象与x轴交于A、B两点,AB=2.若关于x的一元二次方程x2+bx+c-t=0(t为实数),在-2<x<
72
的范围内有实数解,则t的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知关于x的一元二次方程x2+bx+c=x有两个实数根x1,x2,且满足x1>0,x2-x1>1.
(1)试证明c>0;
(2)证明b2>2(b+2c);
(3)对于二次函数y=x2+bx+c,若自变量取值为x0,其对应的函数值为y0,则当0<x0<x1时,试比较y0与x1的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
x1x2=
c
a
.我们把它们称为根与系数关系定理.
如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

请你参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为等腰直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,b2-4ac=
 

(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•红桥区二模)若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是
k>-1且k≠0
k>-1且k≠0

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次方程x2-4x+1-2k=0有两个不等的实根,
(1)求k的取值范围;
(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;
(3)在(2)的条件下,二次函数y=x2-4x+1-2k与x轴交于A、B两点(A点在B点的左侧),D点在此抛物线的对称轴上,若
∠DAB=60°,求D点的坐标.

查看答案和解析>>

同步练习册答案