分析 (1)根据等边三角形“三合一”的性质证得DE垂直平分AC;然后由等腰三角形的判定知AE=CE,根据等边对等角、直角三角形的两个锐角互余的性质以及等量代换求得∠BCE=∠B;最后根据等角对等边证得CE=BE,所以AE=CE=BE;
(2)由已知数据可求出AB的长,再由(1)知,DE垂直平分AC,故PC=PA;由等量代换知PB+PC=PB+PA;根据两点之间线段最短可知,当点P、B、A在同一直线上最小,所以点P在E处时最小,即AB的长.
解答 解:(1)证明:在等边三角形ADC中,
∵DF⊥AC,
∴DF垂直平分AC,
∴AE=CE,
∴∠ACE=∠CAE(等边对等角);
∵∠ACB=90°(已知),
∴∠ACE+∠BCE=∠CAE+∠B=90°,
∴∠BCE=∠B,
∴CE=BE(等角对等边),
∴AE=BE;
(2)∵DA=24cm,△ADC是等边三角形,
∴AC=DA=24cm,
∵AF=CF,AE=BE,
∴EF=$\frac{1}{2}$BC,
∴BC=2EF=10cm,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=26cm,
由(1)知,DE垂直平分AC,
∴PC=PA,
∴PB+PC=PB+PA;
∴当PB+PC最小时,也就是PB+PA最小,即点P、B、A在同一直线上最小,所以点P在E处时最小.
当点P在E处时,PB+PC=EB+EC=EB+EA=AB=26cm.
点评 本题综合考查了等边三角形的性质、线段垂直平分线的性质以及勾股定理的运用.解答(2)题时,主要利用“两点之间线段最短”来确定点P的位置.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com