【题目】一次函数y=kx+b的图象与反比例函数的图象相交于A(﹣1,m),B(n,-1)两点.
(1)求出这个一次函数的表达式;
(2)求△OAB的面积.
【答案】(1)y=﹣x+1;(2)
【解析】
(1)先把A(﹣1,m),B(n,﹣1)分别代入反比例函数解析式可求出m、n,于是确定A点坐标为(﹣1,2),B点坐标为(2,﹣1),然后利用待定系数法求直线AB的解析式;
(2)设直线AB交y轴于P点,先确定P点坐标,然后利用S△OAB=S△AOP+S△BOP和三角形面积公式进行计算.
(1)把A(﹣1,m),B(n,﹣1)分别代入y得﹣m=﹣2,﹣n=﹣2,解得:m=2,n=2,
所以A点坐标为(﹣1,2),B点坐标为(2,﹣1),
把A(﹣1,2),B(2,﹣1)代入y=kx+b得:,解得:,
所以这个一次函数的表达式为y=﹣x+1;
(2)设直线AB交y轴于P点,如图,
当x=0时,y=1,所以P点坐标为(0,1),
所以S△OAB=S△AOP+S△BOP1×11×2.
科目:初中数学 来源: 题型:
【题目】“特色福州,美好生活”,福州举行金色秋天旅游活动.明明和华华同学分析网上关于旅游活动的信息,发现最具特色的景点有:①鼓岭、②森林公园、③青云山.他们准备周日下午去参观游览,各自在这三中个景点任选一个,每个景点被选中的可能性相同.
(1)明明同学在三个备选景点中选中鼓岭的概率是 .
(2)用树状图或列表法求出明明和华华他们选中不同景点参观的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校“综合实践”社团,计划利用长的栅栏材料,一边靠原有旧墙围成如图所示的两个矩形试验田,墙的长度为.
(1)能否围成总面积为的试验田?若能,求出的长度;若不能,说明理由;
(2)能否围成总面积为的试验田?说说你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
阅读理解:数学兴趣小组在探究如何求的值,经过思考、讨论、交流,得到以下思路:
如图1,作,使,,延长至点,使,连接.
设,则,..
请解决下列问题:
(1)类比求解:求出的值;
(2)问题解决:如图2,某住宅楼的后面有一建筑物,当光线与地面的夹角是时,住宅在建筑物的墙上留下高的影子;而当光线与地面的夹角是时,住宅楼顶在地面上的影子与墙角有的距离(,,在一条直线上).求住宅楼的高度(结果保留根号);
(3)探究发现:如图3,小明用硬纸片做了两个直角三角形,在中,,,;在中,,,.他将的斜边与的斜边重合在一起,并将沿方向移动.在移动过程中,,两点始终在边上(移动开始时点与点重合).探究在移动过程中,是否存在某个位置,使得?如果存在,直接写出的长度;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图,在中,CD为角平分线,,,求证:CD为的完美分割线.
(2)如图,中,,,CD是的完美分割线,且是以CD为底边的等腰三角形,求完美分割线CD的长.
(3)在中,,CD是的完美分割线,且为等腰三角形,直接写出∠ACB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了了解本校学生喜爱的球类运动,在本校范围内随机抽查了部分学生,将收集的数据统计整理,绘制成如下两幅不完整的统计图.
请你根据图中提供的信息解答下列问题:
(1)本次一共调查了________名学生;
(2)补全条形统计图;
(3) “足球”在扇形统计图中所占圆心角的度数为________;
(4)若已知该校有1000名学生,请你根据调查的结果估计爱好“足球”和“排球”的学生共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P到图形Ω(可以是线段、三角形、圆或不规则图形等)的距离是指:点P与图形Ω中所有点连接的线段中最短线段的长度.如图①中的两个虚线段PQ的长度都表示点P到图形Ω的距离.
如图②,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为,点P从原点出发,以每秒1个单位长度的速度向x轴的正方向运动了t秒.
(1)当t=0时,求点P到△ABC的距离;
(2)当点P到△ABC的距离等于线段AP的长度时,求t的范围;
(3)当点P到△ABC的距离大于时,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com