【题目】如图,在平而直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的项点C、D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是( )
A.2B.3C.4.D.5
【答案】B
【解析】
由一次函数的关系式可求出与x轴,y轴的交点坐标,即求出OA、OB的长,由正方形的性质、三角形全等可以求出DE、AE、CF、BF的长,进而求出G的坐标,最后求出CG的长就是n的值.
解:过D、C分别作DE⊥x轴,CF⊥y轴,垂足分别为E、F,CF交反比例函数的图象于G,
把x=0和y=0分别代入y=﹣4x+4得:y=4和x=1,
∴A(1,0),B(0,4),
∴OA=1,OB=4;
由ABCD是正方形,
易证△AOB≌△DEA≌△BCF (AAS),
∴DE=BF=OA=1,AE=CF=OB=4,
∴D(5,1),F(0,5),
把D(5,1),代入y=得,k=5,
把y=5代入y=得,x=1,即FG=1,
CG=CF﹣FG=4﹣1=3,即n=3,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图1所示,六个小朋友围成一圈(面向圈内)做传球游戏,规定:球不得传给自己,也不得传给左手边的人.若游戏中传球和接球都没有失误.
若由
开始一次传球,则
和
接到球的概率分别是 、 ;
若增加限制条件:“也不得传给右手边的人”.现在球已传到
手上,在下面的树状图2中
画出两次传球的全部可能情况,并求出球又传到手上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线M:y=ax2+bx+c(a≠0)经过A(﹣1,0),且顶点坐标为B(0,1).
(1)求抛物线M的函数表达式;
(2)设F(t,0)为x轴正半轴上一点,将抛物线M绕点F旋转180°得到抛物线M1.
①抛物线M1的顶点B1的坐标为 ;
②当抛物线M1与线段AB有公共点时,结合函数的图象,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧
的2倍;⑤AE=BC,其中正确的序号是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD'的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:
①连接DD',则AP垂直平分DD';
②四边形PMBN是菱形;
③AD2=DPPC;
④若AD=2DP,则;
其中正确的结论是_____(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.
感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)
探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.
应用:(1)直接写出△MNC的面积S的取值范围 ;
(2)若DM:DB=3:5,则AN与BN的数量关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是⊙
的弦,
交
于点
,过点
的直线交
的延长线于点
,且
是⊙
的切线.
(1)判断的形状,并说明理由;
(2)若,求
的长;
(3)设的面积是
的面积是
,且
.若⊙
的半径为
,求
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料.
(1)设计一种砌法,使矩形花园的面积为300m2.
(2)当BC为何值时,矩形ABCD的面积有最大值?并求出最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线,在四边形ABCD中,对角线BD是它的相似对角线,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________度
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com