分析 根据正方形的性质可得出∠3=45°,根据长方形的性质即可得出相等的边,由此可得出全等的三角形,进而得出∠1与∠5互余、∠2与∠4互余,再将其代入∠1+∠2+∠3+∠4+∠5中即可得出结论.
解答 解:在图中标上字母,如图所示.
∵四边形ABCD为4×4的正方形,
∴∠3=45°.
∵四边形ANPE为1×1的正方形,
∴AE=AN.
∵四边形CDEF和四边形BCMN均为4×3的长方形,
∴CE=CN.
在△ACE和△ACN中,$\left\{\begin{array}{l}{AC=AC}\\{AE=AN}\\{CE=CN}\end{array}\right.$,
∴△ACE≌△ACN(SSS),
∴∠AEC=∠ANC,
∴∠2+∠4+90°=180°,
∴∠2与∠4互余.
同理可得:∠1与∠5互余.
∴∠1+∠2+∠3+∠4+∠5=(∠1+∠5)+(∠2+∠4)+∠3=90°+90°+45°=225°.
故答案为:225°.
点评 本题考查了全等图形、全等三角形的判定与性质、长方形及正方形的性质,解题的关键是找出∠3=45°、∠1与∠5互余、∠2与∠4互余.
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 2倍 | D. | 3倍 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
送件数量x(件) | 提成(元/件) |
不超过100件的部分 | 1 |
超过100件不超过200件的部分 | 1.5 |
超过200件的部分 | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com