分析 (1)首先过点C作CD⊥AB于D,构建直角△ACD,通过解该直角三角形得到CD的长度即可;
(2)通过解直角△BCD来求BC的长度.
解答 解:(1)如图,过点C作CD⊥AB于D,
由题意,得∠ACD=30°.
在直角△ACD中,∠ADC=90°,
∴cos∠ACD=$\frac{AD}{AC}$,
∴CD=AC•cos30°=120×$\frac{\sqrt{3}}{2}$=60$\sqrt{3}$(海里);
(2)在直角△BCD中,∠BDC=90°,∠DCA=45°,
∴cos∠BCD=$\frac{CD}{BC}$,
∴BC=$\frac{CD}{cos45°}$=$\frac{60\sqrt{3}}{\frac{\sqrt{2}}{2}}$=60$\sqrt{6}$≈60×2.44=146.4(海里),
∴146.4÷20=7.32≈7.3(小时).
答:(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离是60$\sqrt{3}$海里;
(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间约为7.3小时.
点评 此题考查了方向角问题.此题难度适中,注意将方向角问题转化为解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.
科目:初中数学 来源: 题型:选择题
A. | 10πcm2 | B. | 20πcm2 | C. | 40πcm2 | D. | 80πcm2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 cm | B. | 2 cm | C. | 3 cm | D. | 4cm |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 6000米 | B. | 1000$\sqrt{3}$米 | C. | 2000$\sqrt{3}$米 | D. | 3000$\sqrt{3}$米 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{AE}{AB}=\frac{FE}{FC}$ | B. | $\frac{AE}{AB}=\frac{AF}{DF}$ | C. | $\frac{AE}{AB}=\frac{AF}{BC}$ | D. | $\frac{AE}{BE}=\frac{AF}{BC}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com