精英家教网 > 初中数学 > 题目详情
8.已知扇形半径为2cm,圆心角为90度,则此扇形的弧长是πcm.

分析 把已知数据代入弧长的公式l=$\frac{nπr}{180}$计算即可.

解答 解:l=$\frac{90π×2}{180}$=π,
故答案为:π.

点评 本题考查的是弧长的计算,掌握弧长的公式:l=$\frac{nπr}{180}$是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.如图,在平面直角坐标系中,点B1,B2,B3,…是直线y=$\frac{\sqrt{3}}{3}$x上的第一象限内的点;点A1,A2,A3,…,在x轴正半轴上,且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若A1的坐标为(1,0),则点么B5的坐标是(24,8$\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在平面直角坐标系中,直线y=-$\frac{1}{2}$x+2分别交x轴、y轴于A、B两点,点P(1,m)在△AOB的形内(不包含边界),则m的取值范围是0<m<$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列运算中,正确的是(  )
A.a2+a3=a5B.$\sqrt{4}$=±2C.a2•a3=a5D.(2a)3=6a3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.计算:|-2|-(2016-π)0-$\sqrt{8}$=1-2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.小明做二次根式化简时,发现一些二次根式的被开方数仍含有根号,比如:$\sqrt{3+2\sqrt{2}}$,善于思考的小明进行了如下探索:要将$\sqrt{a±2\sqrt{b}}$化简,如果能找到两个数m、n,使m2+n2=a且$mn=\sqrt{b}$,则将$a±2\sqrt{b}$将变成m2+n2±2mn,即变成(m±n)2开方,从而使得$\sqrt{a±2\sqrt{b}}$化简.
例如:$\sqrt{3+2\sqrt{2}}=\sqrt{{{(\sqrt{2})}^2}+{1^2}+2\sqrt{2}}=\sqrt{{{(\sqrt{2}+1)}^2}}=\sqrt{2}+1$
请仿照上例化简:(1)$\sqrt{7+2\sqrt{10}}$(2)$\sqrt{5-2\sqrt{6}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”:用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,随机被甲、乙、丙三人抢到.
(1)以下说法中正确的是D
A.甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多
B.甲一定抢到金额最多的红包
C.乙一定抢到金额居中的红包
D.丙不一定抢到金额最少的红包
(2)记金额最多、居中、最少的红包分别为A,B,C,试求出甲抢到红包A的概率P(A).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:
型号占地面积(m2/个)使用农户数(户/个)造价(万元/个)
A15182
B20303
已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.
(1)满足条件的方案共有哪几种?写出解答过程.
(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知抛物线y=ax2-5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.
(1)求抛物线的解析式;
(2)求直线BC的解析式;
(3)若点N是抛物线上的动点,且点N在第四象限内,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件点N的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案