精英家教网 > 初中数学 > 题目详情
如图矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5).
(1)直接写出B点坐标;
(2)若过点C的直线CD交AB边于点D,且把矩形OABC的周长分为1:3两部分,求直线CD的解析式.
(1)B点坐标为(3,5).

(2)∵过点C的直线CD交AB边于点D,且把矩形OABC的周长分为1:3两部分,
OC=AB>BD,OA=BC,
则一定有:
CB+BD
CO+OA+AB-BD
=
1
3

3+BD
13-BD
=
1
3

解得BD=1,
∴AD=AB-BD=5-1=4,
即D点的坐标为(3,4),
设直线CD的关系式为y=kx+b,且经过(0,5)和(3,4)得,
b=5
3k+b=4

解之得
k=-
1
3
b=5

即直线CD的关系式为:y=-
1
3
x+5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

甲、乙两人同时登云雾山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,若乙提速后乙的速度是甲的3倍,从甲、乙相距100米到乙追上甲时,甲、乙两人一共攀登了______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,矩形OABC的顶点坐标为O(0,0),A(2
3
,0),B(2
3
,2),把矩形OABC绕点O逆时针方向旋转α度,使点B正好落在y轴正半轴上,得到矩形OA1B1C1
(1)求角α的度数;
(2)求直线A1B1的函数关系式,并判断直线A1B1是否经过点B,为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

水库的库容通常是用水位的高低来预测的.下表是某市一水库在某段水位范围内的库容与水位高低的相关水文资料,请根据表格提供的信息回答问题.
水位高低x(单位:米)10203040
库容y(单位:万立方米)3000360042004800
(1)将上表中的各对数据作为坐标(x,y),在给出的坐标系中用点表示出来:
(2)用线段将(1)中所画的点从左到右顺次连接.若用此图象来模拟库容y与水位高低x的函数关系.根据图象的变化趋势,猜想y与x间的函数关系,求出函数关系式并加以验证;
(3)由于邻近市区连降暴雨,河水暴涨,抗洪形势十分严峻,上级要求该水库为其承担部分分洪任务约800万立方米.若该水库当前水位为65米,且最高水位不能超过79米.请根据上述信息预测:该水库能否承担这项任务并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一次函数的图象y=kx+b与两坐标轴围成的三角形的面积是8,且过点(0,2),求此一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读材料:
在平面直角坐标系中,已知x轴上两点A(x1,0),B(x2,0)的距离记作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意两点,我们可以通过构造直角三角形来求AB间距离.
如图,过A,B分别向x轴,y轴作垂线AM1、AN1和BM2、BN2,垂足分别是M1(x1,0),N1(0,y1),M2(x2,0),N2(0,y2),直线AN1交BM2于Q点,在Rt△ABQ中,|AB|2=|AQ|2+|QB|2
∵|AQ|=|M1M2|=|x2-x1|,|QB|=|N1N2|=|y2-y1|,∴|AB|2=|x2-x1|2+|y2-y1|2
由此得任意两点[A(x1,y1),B(x2,y2)]间距离公式为:|AB|=
(x2-x1)2+(y2-y1)2

(1)直接应用平面内两点间距离公式计算,点A(1,-3),B(-2,1)之间的距离为______;
(2)平面直角坐标系中的两点A(1,3)、B(4,1),P为x轴上任一点,当PA+PB最小时,直接写出点P的坐标为______,PA+PB的最小值为______;
(3)应用平面内两点间距离公式,求代数式
x2+(y-2)2
+
(x-3)2+(y-1)2
的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l与x轴交于点A(-1.5,0),与y轴交于点B(0,3)
(1)求直线l的解析式;
(2)过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲乙两车先后都以60km/h的速度从M地将一批物品运往N地.两车出发后,发货站发现甲车遗漏一件物品,遂派丙车将遗漏物品送达甲车.丙车完成任务后,即沿原路返回(物品交接时间忽略不计).如图表示三辆车离M地的距离s(km)随时间t(min)变化的图象.
请根据图象进行以下探究:
信息读取
(1)说明图象中点B的实际意义;
图象理解
(2)甲车出发多长时间后被丙车追上?此时追及点距M地多远?
问题解决
(3)丙车与乙车在距离M地多远处迎面相遇?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-
3
4
x+6
与x轴、y轴交于A、B两点,M是直线AB上的一个动点,MC⊥x轴于C,MD⊥y轴于D,若点M的横坐标为a.
(1)当点M在线段AB上运动时,用a的代数式表示四边形OCMD的周长;
(2)在(1)的条件下,求四边形OCMD面积的最大值;
(3)以M为圆心MD为半径的⊙M与以A为圆心AC为半径的⊙A相切时,求a的值.

查看答案和解析>>

同步练习册答案