精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H不在同一条直线上.
求证:EF和GH互相平分.
分析:要证明EF和GH互相平分,只需构造一个平行四边形,运用平行四边形的性质:平行四边形的对角线互相平分即可证明.
解答:精英家教网证明:连接EG、GF、FH、HE,
∵点E、F、G、H分别是AB、CD、AC、BD的中点,
∴EG、HF分别是△ABC与△DBC的中位线,
∴EG=
1
2
BC,HF=
1
2
BC,
∴EG=HF.
同理EH=GF.
∴四边形EGFH为平行四边形.
∴EF与GH互相平分.
点评:本题考查的是综合运用平行四边形的性质和判定定理.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案