精英家教网 > 初中数学 > 题目详情
15.下面关于绝对值的说法正确的是(  )
A.一个数的绝对值一定是正数
B.一个数的相反数的绝对值一定是正数
C.一个数的绝对值的相反数一定是负数
D.一个数的绝对值一定是非负数

分析 根据绝对值的定义判断即可.

解答 解:A、一个数的绝对值一定是非负数,错误;
B、一个数的相反数的绝对值一定是非负数,错误;
C、一个数的绝对值的相反数一定是非正数,错误;
D、一个数的绝对值一定是非负数,正确;
故选D

点评 本题考查了绝对值的应用,主要考查学生的理解能力和计算能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.矩形具有但菱形不具有的性质是(  )
A.对角线相等B.对角线互相垂直
C.对角线互相平分且相等D.对角线互相平分

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在反比例函数y=$\frac{k}{x}$的图象上有一点A,过A作AC垂直x轴于点C,已知点C的坐标为(1,0),点D与点C关于原点对称,且S△ACD=4,直线AD交双曲线的另一支于点B.
(1)求k的值;
(2)求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.问题背景:
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF;

探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=$\frac{1}{2}$∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列说法中:①-2是相反数;②2是相反数;③-2是2的相反数;④-2和2互为相反数.其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知a>1,化简$\sqrt{(1-a)^{2}}$+|a|的结果正确的是(  )
A.1-2aB.2a-1C.-1D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.求证:两条平行直线被第三条直线所截,一对同旁内角的平分线互相垂直
解:如图,已知直线AB∥CD,直线OP,MN分别平分∠BOM,∠OMD,直线OP,MN交于G点.
求证:MN⊥OP
证明:∵AB∥CD(已知)
∴∠BOM+∠OMD=180°(两直线平行,同旁内角互补).
∵MN,OP分别平分∠OMD,∠BOM(已知),
∴2∠POM+2∠NMO=180°(角平分线的定义)
∴∠POM+∠PMO=90°(等式的性质)
∴∠MGO=90°(三角形的内角和定理)
∴MN⊥OP.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如果a>b,m表示一个有理数,那么下列结论中,错误的是(  )
A.-2a<-2bB.a+m>b+mC.am>bmD.$\frac{a}{3}$>$\frac{b}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若函数y=(a+3)x|a|-2+2a+1是一次函数,则 a=3.

查看答案和解析>>

同步练习册答案