精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD,M是BC上一点,连接AM,作AM的垂直平分线GH交AB于点G,交CD于点H,已知AM=10cm,求GH的长.
把线段GH向下平移到BN,则BN=GH,BN⊥AM,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=∠BEM=90°.
∴∠BAM=90°-∠AMB=∠CBN.
∴Rt△ABM≌Rt△BCN.
故可以以正方形ABCD的中心为旋转中心,逆时针旋转90°,使Rt△ABM重合于Rt△BCN,
∴GH=BN=AM=10cm.
也可以利用三角形全等来解.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

将边长分别为
2
2
2
3
2
4
2
、…的正方形的面积分别记作S1、S2、S3、S4,…,计算S2-S1,S3-S2,S4-S3,….若边长为n•
2
(n为正整数)的正方形面积记作Sn,根据你的计算结果,猜想Sn-Sn-1=______.(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知E、F分别是正方形的边AB、AD中点,DE,CF相交于P,DE的延长线交CB的延长线于G,若正方形的边长为6cm,求PB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABOC的边长为2个单位长度,边OB与x轴的负半轴的夹角为30°,则点C的坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且AE⊥AF,A为垂足.
求证:△AEF是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

点G是正方形ABCD边AB的中点,点E是射线BC上一点,∠AEF=90°,且EF交正方形外角平分线CF于点F,连接EG.

(1)若E为BC的中点(如图1)
①求证:△AEG≌△EFC;
②连接DF,DB,求证:DF⊥BD;
(2)若E是BC延长线上一点(如图2),则线段CF和BE之间存在怎样的数量关系,给出你的结论并证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB的延长线于点P.
(1)设DE=m(0<m<12),试用含m的代数式表示
FH
HG
的值;
(2)在(1)的条件下,当
FH
HG
=
1
2
时,求BP的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD,F为DC的中点,E为BC上一点,且EC=
1
4
BC.
(1)求证:AF⊥EF;
(2)若△AEF的面积为5,求正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,DC的中点为E,F为CE的中点,求证:∠DAE=
1
2
∠BAF.

查看答案和解析>>

同步练习册答案