证明:(1)∵平行四边形DBEC,
∴CE∥BD,CE=BD,
∵D为AB中点,
∴AD=BD,
∴CE∥AD,CE=AD,
∴四边形ADCE为平行四边形,
又BC∥DE,
∴∠AFD=∠ACB=90°,
∴AC⊥DE,
故四边形ADCE为菱形,
(2)在Rt△ABC中,∵AB=16,AC=12,
∴BC=4
,
∵D为AB中点,F也为AC的中点,
∴DF=2
,
∴四边形ADCE的面积=AC×DF=24
,
(3)应添加条件AC=BC.
证明:∵AC=BC,D为AB中点,
∴CD⊥AB(三线合一的性质),即∠ADC=90°.
∵四边形BCED为平行四边形,四边形ADCE为平行四边形,
∴DE=BC=AC,∠AFD=∠ACB=90°.
∴四边形ADCE为正方形.(对角线互相垂直且相等的四边形是正方形)
分析:(1)由题意容易证明CE平行且等于AD,又知AC⊥DE,所以得到四边形ADCE为菱形;
(2)根据解三角形的知识求出AC和DF的长,然后根据菱形的面积公式求出四边形ADCE的面积;
(3)应添加条件AC=BC,证明CD⊥AB且相等即可.
点评:本题主要考查正方形的判定、菱形的判定与性质和勾股定理等知识点,此题是道综合体,有一定的难度,解答的关键还是要能熟练掌握各种四边形的基本性质.