精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是(用含m的代数式表示)

【答案】( m+2)
【解析】解:如图,

连接BD,在等腰Rt△ABC中,点D是AC的中点,

∴BD⊥AC,

∴BD=AD=CD,∠DBC=∠A=45°,∠ADB=90°,

∵∠EDF=90°,

∴∠ADE=∠BDF,

在△ADE和△BDF中,

∴△ADE≌△BDF(ASA),

∴AE=BF,DE=DF,

在Rt△DEF中,DF=DE=m.

∴EF= DE= m,

∴△BEF的周长为BE+BF+EF=BE+AE+EF=AB+EF=2+ m,

所以答案是:( m+2)

【考点精析】关于本题考查的等腰直角三角形,需要了解等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为(  )

包场计费:包场每场每小时50元,每人须另付入场费5

人数计费:每人打球2小时20元,接着续打球每人每小时6

A. 9B. 8C. 7D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,过O点作OP⊥AB,交弦AC于点D,交⊙O于点E,且使∠PCA=∠ABC.

(1)求证:PC是⊙O的切线;
(2)若∠P=60°,PC=2,求PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠ACB=90°AC=BC=4,点DAB的中点,MN分别在BCAC上,且BM=CN现有以下四个结论:

DN=DM NDM=90° 四边形CMDN的面积为4④△CMN的面积最大为2.

其中正确的结论有(

A. ①②④ B. ①②③ C. ②③④ D. ①②③④.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一副三角板按如图1方式拼接在一起,其中边OAOC与直线EF重合,

1______

如图2,三角板COD固定不动,将三角板AOB绕着点O按顺时针方向旋转一个角度,在转动过程中两块三角板都在直线EF的上方:

OB平分OAOCOD其中的两边组成的角时,求满足要求的所有旋转角度的值;

是否存在?若存在,求此时的的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50AB两种型号的车厢将这批货物运至北京已知甲种货物35吨和乙种货物15吨可装满一节A型货厢甲货物25吨和乙种货物35吨可装满一节B型货厢按此要求安排AB两种货厢的节数共有哪几种方案?请你设计出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线AMBN,点EFD在射线AM上,点C在射线BN上,且∠BCD=∠ABE平分∠ABFBD平分∠FBC.

(1)求证:ABCD.

(2)如果平行移动CD,那么∠AFB与∠ADB的比值是否发生变化?若变化,找出变化规律;若不变,求出这两个角的比值.

(3)如果∠A100°,那么在平行移动CD的过程中,是否存在某一时刻,使∠AEB=∠BDC?若存在,求出此时∠AEB的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;

(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒
个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.

查看答案和解析>>

同步练习册答案