精英家教网 > 初中数学 > 题目详情
抛物线y=-x2+3x-2与y=ax2的形状相同,而开口方向相反,则a=( )
A.-
B.3
C.-3
D.
【答案】分析:抛物线的形状与|a|有关,开口方向与a的正负有关.
解答:解:∵抛物线y=-x2+3x-2与y=ax2的形状相同,
∴二次项系数的绝对值相等,都为
∵开口方向相反
∴二次项系数互为相反数,
即y=ax2中,a=
故选D.
点评:抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线y=x-3于x轴、y轴分别交于B、C;两点,抛物线y=x2+bx+c同时经过B、C两点,点精英家教网A是抛物线与x轴的另一个交点.
(1)求抛物线的函数表达式;
(2)若点P在线段BC上,且S△PAC=
12
S△PAB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1、x2是抛物线y=x2-2(m-1)x+m2-7与x轴的两个交点的横坐标,且x12+x22=10.
求:(1)x1、x2的值;
(2)抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知一元二次方程-x2+bx+c=0的两个实数根是m,4,其中0<m<4.
(1)求b、c的值(用含m的代数式表示);
(2)设抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C.若点D的坐标为(0,-2),且AD•BD=10,求抛物线的解析式及点C的坐标;
(3)在(2)中所得的抛物线上是否存在一点P,使得PC=PD?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知抛物线y=x2+bx+c的部分图象如图所示,若方程x2+bx+c=0有两个同号的实数根,则c的值可以是
2
.(写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

11、在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是(  )

查看答案和解析>>

同步练习册答案