精英家教网 > 初中数学 > 题目详情
(1)如图(1),在正方形ABCD中,对角线AC、BD相交于点O,易知AC⊥BD,
CO
AC
=
1
2

(2)如图(2),若点E是正方形ABCD的边CD的中点,即
DE
DC
=
1
2
,过D作DG⊥AE,分别交AC、BC于点F、G.求证:
CF
AC
=
1
3

(3)如图(3),若点P是正方形ABCD的边CD上的点,且
DP
DC
=
1
n
(n为正整数),过点D作DN⊥AP,分别交AC、BC于点M、N,请你先猜想CM与AC的比值是多少,然后再证明你猜想的结论.
精英家教网
分析:(2)由同角的余角知,∠1=∠2,由ASA证得△ADE≌△DCG?CG=DE,由BC∥AD?
CG
AD
=
CF
AF
=
1
2
,故有
CF
AC
=
1
3

(3)同理猜想得到
CN
BC
=
DP
DC
=
1
n
,有
CM
AC
=
1
n+1
解答:精英家教网(2)证明:∵四边形ABCD为正方形,
∴AD=DC,
∴∠1+∠ADG=90°,
又∵DG⊥AE,
∴∠2+∠ADG=90°,
∴∠1=∠2,
∵AD=DC,∠1=∠2,∠ADE=∠DCG=90°,
∴△ADE≌△DCG(ASA),
∴CG=DE,
又∵E为BC中点,
∴CG=DE=
1
2
DC,
∴CG=
1
2
AD,
∵BC∥AD,
CG
AD
=
CF
AF
=
1
2

CF
AC
=
1
3
;(8分)

(3)猜想
CM
AC
=
1
n+1
;(10分)
同理可证
CN
BC
=
DP
DC
=
1
n

又∵BC∥AD,
CM
AM
=
CN
AD
=
1
n

CM
AC
=
1
n+1
.(14分)
点评:本题主要利用了正方形的性质,全等三角形的判定和性质和平行线的性质进行求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知:在Rt△ABC中,∠C=90°,E为AB的中点,且DE⊥AB于E,若∠CAD:∠DAB=1﹕2,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,E、F两点在BC上,BE=CF,AB∥DE,AF∥CD
(1)求证:△ABF≌△DEC;
(2)已知中的图是否为轴对称图形?
答:
(填:“是”或“否”)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:在△ABC中,∠A=90°,AB=AC=6,P是AB上不与A、B重合的一动点,PQ⊥BC于Q,QR⊥AC于R.
(1)求证:PQ=BQ;
(2)设BP的长为x,QR的长为y,求y与x之间的函数关系式,并写出函数的定义域;
(3)PR能否平行于BC?如果能,试求出x的值;若不能,请简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一艘轮船在A处看见巡逻艇M在其北偏东64°的方向上,此时一艘客船在B处看见巡逻艇M在其北偏东13°的方向上,则此时从巡逻艇上看这两艘船的视角∠AMB=
51°
51°

查看答案和解析>>

同步练习册答案