精英家教网 > 初中数学 > 题目详情

如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.

(1)求经过A、B、C三点的抛物线的解析式;

(2)当BE经过(1)中抛物线的顶点时,求CF的长;

(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

练习册系列答案
相关习题

科目:初中数学 来源:2017届江苏省九年级下学期第一次学情调研数学试卷(解析版) 题型:单选题

运用乘法公式计算的结果是

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年山东省文慧学校八年级下学期第一次月考数学试卷(解析版) 题型:填空题

的相反数是______, -1的绝对值是 ______________

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.某种正方形合金板材的成本y(元)与它的面积成正比.设它的边长为x厘米,当x=2时,y=16,那么当成本为72元时,边长为(  )
A.4厘米B.3$\sqrt{2}$厘米C.2$\sqrt{3}$厘米D.6厘米

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,矩形ABCD中,AB=2AD=4cm,动点P从点A出发,以lcm/s的速度沿线段AB向点B运动,动点Q同时从点A出发,以2cm/s的速度沿折线AD→DC→CB向点B运动,当一个点停止时另一个点也随之停止.设点P的运动时间是x(S)时,△APQ的面积是y(cm2),则能够反映y与x之间函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,AB是⊙O的直径,点B是弧CD的中点,AB交弦CD于点H,且CD=2$\sqrt{3}$,BD=2,则AB的长为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在△ABC中,点D在BC边上,点E是线段AD的中点,过点A作BC的平行线与BE的延长线于点F,连结CF,若AF=DC.
(1)求证:BD=DC;
(2)当四边形ADCF为正方形时,线段AB与BC有何数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,点A,B坐标分别为A(0,a),B(b,a),且实数a,b满足(a-3)2+|b-5|=0,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积;
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义证明完全平方公式.
证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:
这个图形的面积可以表示成:
(a+b)2或 a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
这就验证了两数和的完全平方公式.
类比解决:
(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)
问题提出:如何利用图形几何意义的方法证明:13+23=32
如图2,A表示1个1×1的正方形,即:1×1×1=13
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
尝试解决:
(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=62.(要求写出结论并构造图形写出推证过程).
(3)问题拓广:
请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=[$\frac{1}{2}$n(n+1)]2.(直接写出结论即可,不必写出解题过程)

查看答案和解析>>

同步练习册答案