同学们都知道,|5-(-2)|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.试探索:
(1)|5-(-2)|=______.
(2)找出所有符合条件的整数x,使|x+5|+|x-2|=7成立.
(3)由以上探索猜想,对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,说明理由.
解:(1)原式=|5+2|
=7
故答案为7
(2)令x+5=0或x-2=0时,则x=-5或x=2
当x<-5时,
∴-(x+5)-(x-2)=7,
-x-5-x+2=7,
x=5(范围内不成立)
当-5<x<2时,
∴(x+5)-(x-2)=7,
x+5-x+2=7,
7=7,
∴x=-4,-3,-2,-1,0,1
当x>2时,
∴(x+5)+(x-2)=7,
x+5+x-2=7,
2x=4,
x=2,
x=2(范围内不成立)
∴综上所述,符合条件的整数x有:-5,-4,-3,-2,-1,0,1,2
(3)由(2)的探索猜想,对于任何有理数x,|x-3|+|x-6|有最小值为3.
分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.
(2)要x的整数值可以进行分段计算,令x+5=0或x-2=0时,分为3段进行计算,最后确定x的值.
(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.
点评:本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.