精英家教网 > 初中数学 > 题目详情
精英家教网如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB=
 
m.
分析:根据题意直接利用三角形中位线定理,可求出AB.
解答:解:∵E、F是AC,AB的中点,
∴EF是△ABC的中位线,
∴EF=
1
2
AB
∵EF=20cm,
∴AB=40cm.
故答案为40.
点评:本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

武汉欢乐谷要建一个圆形喷水池,如图所示,计划在喷水池的周边靠近水面的位置安装一圆喷水头,时喷出的水柱在离池中心4m处达到最高,高度为6m,另外还要再喷水池的中心设计一个装饰水坛,使各方向喷来的水柱在此汇合,已知装饰水坛的高度为
10
3
m.
(1)建立平面直角坐标系,使抛物线水柱最高坐标为(4,6),装饰水坛最高坐标为(0,
10
3
),求圆形喷水池的半径.
(2)为防止游客戏水出现危险,公园再喷水池内设置了一个六方形隔离网.如图,若该六边形被圆形喷水池的直径AB平分为两个相同的等腰梯形,那么,当该等腰梯形的腰AD长为多少时,该梯形周长最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

武汉欢乐谷要建一个圆形喷水池,如图所示,计划在喷水池的周边靠近水面的位置安装一圆喷水头,时喷出的水柱在离池中心4m处达到最高,高度为6m,另外还要再喷水池的中心设计一个装饰水坛,使各方向喷来的水柱在此汇合,已知装饰水坛的高度为
数学公式m.
(1)建立平面直角坐标系,使抛物线水柱最高坐标为(4,6),装饰水坛最高坐标为(0,数学公式),求圆形喷水池的半径.
(2)为防止游客戏水出现危险,公园再喷水池内设置了一个六方形隔离网.如图,若该六边形被圆形喷水池的直径AB平分为两个相同的等腰梯形,那么,当该等腰梯形的腰AD长为多少时,该梯形周长最大?

查看答案和解析>>

科目:初中数学 来源:2013年湖北省武汉市中考数学模拟试卷(十二)(解析版) 题型:解答题

武汉欢乐谷要建一个圆形喷水池,如图所示,计划在喷水池的周边靠近水面的位置安装一圆喷水头,时喷出的水柱在离池中心4m处达到最高,高度为6m,另外还要再喷水池的中心设计一个装饰水坛,使各方向喷来的水柱在此汇合,已知装饰水坛的高度为
m.
(1)建立平面直角坐标系,使抛物线水柱最高坐标为(4,6),装饰水坛最高坐标为(0,),求圆形喷水池的半径.
(2)为防止游客戏水出现危险,公园再喷水池内设置了一个六方形隔离网.如图,若该六边形被圆形喷水池的直径AB平分为两个相同的等腰梯形,那么,当该等腰梯形的腰AD长为多少时,该梯形周长最大?

查看答案和解析>>

同步练习册答案