精英家教网 > 初中数学 > 题目详情
1.小明沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙0点,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息如下:如图,AB∥OE,OE∥CD,AC与BD相交于点O,OD⊥CD,垂足为点D,下列结论中不正确的是(  )
A.∠BOA=∠DOCB.AB∥CD
C.∠ABD=90°D.与∠AOE相等的角共有2个

分析 根据对顶角相等,平行线的性质分别进行分析即可.

解答 解:A、∠BOA和∠DOC是对顶角,因此∠BOA=∠DOC正确,故此选项不合题意;
B、∵AB∥OE,OE∥CD,
∴AB∥CD,正确,故此选项不合题意;
C、∵AB∥CD,
∴∠ABD=∠BDC,
∵OD⊥CD,
∴∠ADO=90°,
∴∠DBA=90°,正确,故此选项不合题意;
D、∵AB∥OE,
∴∠BAO=∠AOE,
∵CD∥EO,
∴∠OCD=∠AOE,
∵∠AOE=∠1,
∴与∠AOE相等的角有3个,原题说法错误,故此选项符合题意,
故选:D.

点评 此题主要考查了平行线的性质,关键是掌握两直线平行,同位角内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,方格是由边长为1个单位长度的正方形组成的.
(1)求图中阴影部分面积;
(2)画出△ABC向右平移两个单位后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图①所示是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)图②中的阴影部分的正方形的边长等于a-b;
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法①(a-b)2.方法②(a+b)2-4ab;
(3)观察图②,你能写出(a+b)2,(a-b)2,ab这三个代数式之间的等量关系吗?
(4)根据(3)题中的等量关系,解决如下问题:若x+y=8,xy=6,则求(x-y)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,∠C=90°,D为AB边上一点,以DB为直径的⊙O与AC相切于点E,与BC相交于点F,FN⊥BE交⊙O于点N.
(1)求证:BE平分∠ABC;
(2)若sinA=$\frac{2}{3}$,AB=30,求圆心O到EN的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)$\frac{1}{2}\sqrt{12}$-(3$\sqrt{\frac{1}{3}}$+$\sqrt{5}}$)
(2)20170+$\sqrt{8}$+2×2-1-|$\sqrt{2}$-2|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,D是边BC上一点,若AB=10,BD=6,AD=8,AC=17,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解方程:2x2+4x-1=0(用配方法).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知:线段AB,BC,∠ABC=90°.
求作:矩形ABCD.
以下是甲、乙两同学的作业:

老师说甲、乙同学的作图都正确.
则甲的作图依据是:两组对边分别相等的四边形是平行四边形;有一个角是直角的平行四边形是矩形;
乙的作图依据是:对角线互相平分的四边形是平行四边形;有一个角是直角的平行四边形是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.阅读下面材料,并解答其后的问题:
定义:两组领边分别相等的四边形叫做筝形.
如图1,四边形ABCD中,若AD=AB,CD=CB,则四边形ABCD是筝形.
类比研究:
我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对平行四边形的性质进行研究,请根据示例图形,完成下表:
四边形示例图形对称性对角线
平行
四边形
两组对边分别平行,两组对边分别相等两组对边分别平行,两组对边分别相等.两组对角
分别相等.
对角线互相平分.
等腰
梯形
①轴对称图形两组邻边分别相等有一组对角相等②一条对角线垂直平分另一条对角线
(1)表格中①、②分别填写的内容是:
①轴对称图形;
②一条对角线垂直平分另一条对角线.
(2)演绎论证:证明筝形有关对角线的性质.
已知:在筝形ABCD中,AD=AB,BC=DC,AC、BD是对角线.
求证:AC垂直平分BD.
证明:
(3)运用:如图3,已知筝形ABCD中,AD=AB=4,CD=CB,∠A=90°,∠C=60°,求筝形ABCD的面积

查看答案和解析>>

同步练习册答案