19£®£¨1£©¼ÆËã$\sqrt{0.04}+\root{3}{-27}+\sqrt{£¨-2{£©^2}}$
£¨2£©¼ÆËã|1-$\sqrt{2}$|+|$\sqrt{2}$-$\sqrt{3}$|+|$\sqrt{2}$-1|
£¨3£©Èô·½³Ì×é $\left\{\begin{array}{l}x+2y=7+k\\ 5x-y=k\end{array}\right.$µÄ½âxÓëy»¥ÎªÏà·´Êý£¬ÇókµÄÖµ£®
£¨4£©ÒÑÖªÒ»¸öÊýµÄÁ½¸öƽ·½¸ù·Ö±ðÊÇ 3a+2ºÍa+14£¬ÇóÕâ¸öÊýµÄÁ¢·½¸ù£®

·ÖÎö £¨1£©½øÐпª·½ÔËË㣬עÒâ$\sqrt{£¨-2£©^{2}}$=$\sqrt{4}$=2£¬$\root{3}{-27}$=-3£»
£¨2£©ÒòΪ$\sqrt{2}$-1£¾0£¬$\sqrt{2}$-$\sqrt{3}$£¼0£¬¸ù¾ÝÕýÊýµÄ¾ø¶ÔÖµÊDZ¾Éí£¬¸ºÊýµÄ¾ø¶ÔÖµÊÇËüÏà·´ÊýµÃ³ö½áÂÛ²¢Ïà¼Ó£»
£¨3£©°Ñkµ±³£Êý½â·½³Ì×飬ÔÙ¸ù¾ÝxÓëy»¥ÎªÏà·´ÊýÁÐʽ¼ÆËãÇó³ökµÄÖµ£»
£¨4£©¸ù¾ÝÕýÊýµÄƽ·½¸ù»¥ÎªÏà·´Êý¿ÉÖª£º3a+2+a+14=0£¬Çó³öaµÄÖµ£¬´úÈëa+14»ò3a+2ÖеóöÕâ¸öÊý£¬ÇóÆäÁ¢·½¸ù£®

½â´ð ½â£º£¨1£©$\sqrt{0.04}+\root{3}{-27}+\sqrt{£¨-2{£©^2}}$£¬
=0.2-3+2£¬
=-0.8£»
£¨2£©|1-$\sqrt{2}$|+|$\sqrt{2}$-$\sqrt{3}$|+|$\sqrt{2}$-1|£¬
=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+$\sqrt{2}$-1£¬
=$\sqrt{3}$+$\sqrt{2}$-2£»
£¨3£©ÕûÀíµÃ£º$\left\{\begin{array}{l}{x+2y=7+k¢Ù}\\{10x-2y=2k¢Ú}\end{array}\right.$£¬
¢Ù+¢ÚµÃ£º11x=7+3k£¬
x=$\frac{7+3k}{11}$¢Û£¬
°Ñ¢Û´úÈë¢ÙÖеãºy=$\frac{4k+35}{11}$£¬
Ôò$\frac{7+3k}{11}$+$\frac{4k+35}{11}$=0£¬
k=-6£»
£¨4£©3a+2+a+14=0£¬
a=-4£¬
Ôòa+14=-4+14=10£¬
ËùÒÔÕâ¸öÊýÊÇ100£¬ÔòÕâ¸öÊýµÄÁ¢·½¸ùÊÇ$\root{3}{100}$£®

µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËʵÊýµÄ¼ÆËã¡¢¶þÔªÒ»´Î·½³Ì×éºÍƽ·½¸ùµÄÒâÒ壬ÄÚÈÝËä¶à£¬µ«ÄѶȲ»´ó£»ÒªÊìÁ·ÕÆÎÕÒÔÏÂÄÚÈÝ£º
¢Ù¶þ´Î¸ùʽµÄ´óС±È½Ï£¬±»¿ª·½ÊýÔ½´ó£¬ÖµÔ½´ó£»
¢ÚÕýÊýµÄ¾ø¶ÔÖµÊDZ¾Éí£¬¸ºÊýµÄ¾ø¶ÔÖµÊÇËüÏà·´Êý£¬ÁãµÄ¾ø¶ÔÖµÊÇÁ㣻
¢Û¶þÔªÒ»´Î·½³Ì×é³£ÓôúÈë·¨½â£¬µ±Á½¸ö·½³ÌÓÐÈý¸ö×Öĸʱ£¬Òª°ÑÆäÖÐÒ»¸öµ±×÷³£Êý£»
¢Ü»¥ÎªÏà·´ÊýµÄºÍΪÁ㣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁÐÓйرÈÀýÖÐÏîµÄÃèÊöÕýÈ·µÄÓУ¨¡¡¡¡£©
£¨1£©Èôa£¬b£¬cÂú×ã$\frac{a}{b}$=$\frac{b}{c}$£¬ÔòbÊÇa£¬cµÄ±ÈÀýÖÐÏ
£¨2£©ÊµÊýbÊÇ2£¬8µÄ±ÈÀýÖÐÏÔòb=4£»
£¨3£©Èçͼ1£¬µãFÊÇEG±ßÉÏÒ»µã£¬ÇÒ¡ÏEDF=¡ÏG£¬ÔòDEÊÇEF£¬EGµÄ±ÈÀýÖÐÏ
£¨4£©Èçͼ2£¬ËıßÐÎABCDÖУ¬AD¡ÎBC£¬Á½¶Ô½ÇÏßÏཻÓÚµãO£¬¼Ç¡÷AOD£¬¡÷ABO£¬¡÷OBCµÄÃæ»ý·Ö±ðΪS1£¬S2£¬S3£¬ÔòS2ÊÇS1¡¢S3µÄ±ÈÀýÖÐÏ
A£®£¨2£©£¨3£©B£®£¨1£©£¨3£©£¨4£©C£®£¨1£©£¨2£©£¨3£©£¨4£©D£®£¨1£©£¨3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¡÷ABCÓë¡÷A'B'C'ÔÚƽÃæÖ±½Ç×ø±êϵÖеÄλÖÃÈçͼ£®
£¨1£©·Ö±ðд³öÏÂÁи÷µãµÄ×ø±ê£ºA'£¨-3£¬1£©£» B'£¨-2£¬-2£©£»C'£¨-1£¬-1£©£»
£¨2£©ËµÃ÷¡÷A'B'C'ÓÉ¡÷ABC¾­¹ýÔõÑùµÄƽÒƵõ½£¿ÏÈÏò×óƽÒÆ4¸öµ¥Î»£¬ÔÙÏòÏÂƽÒÆ2¸öµ¥Î»£®
£¨3£©ÈôµãP£¨a£¬b£©ÊÇ¡÷ABCÄÚ²¿Ò»µã£¬ÔòƽÒƺó¡÷A'B'C'ÄڵĶÔÓ¦µãP'µÄ×ø±êΪ£¨a-4£¬b-2£©£»
£¨4£©Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Æû³µ¿ªÊ¼ÐÐʹʱ£¬ÓÍÏäÄÚÓÐÓÍ40Éý£¬Èç¹ûÿСʱºÄÓÍ5Éý£¬ÔòÓÍÏäÄÚÊ£ÓàÓÍÁ¿Q£¨Éý£©ÓëÐÐʻʱ¼ät£¨Ê±£©µÄ¹ØϵʽΪ£¨¡¡¡¡£©
A£®Q=5tB£®Q=5t+40C£®Q=40-5t£¨0¡Üt¡Ü8£©D£®ÒÔÉϴ𰸶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¾­²â¶¨ÉùÒôÔÚ¿ÕÆøÖд«²¥µÄËٶȣ¨¼ò³ÆÉùËÙ£©y£¨m/s£©ºÍÆøÎÂx£¨¡æ£©µÄ¹ØϵʽΪy=$\frac{3}{5}$x+331£¬Èç¹ûÆøÎÂΪ22¡æʱ£¬Ä³ÈË¿´µ½ÑÌ»¨È¼·Å5Ãëºó²ÅÌýµ½ÏìÉù£¬ÄÇô´ËÈËÓëȼ·ÅÑÌ»¨ËùÔڵشóÔ¼Ïà¾à¶àÔ¶£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¡÷ABCÔÚƽÃæÖ±½Ç×ø±êϵÖеÄλÖÃÈçͼËùʾ£¬ÆäÖÐÿ¸öСÕý·½Ðεı߳¤Îª1¸öµ¥Î»³¤¶È£®°´ÒªÇó×÷ͼ£º
¢Ù»­³ö¡÷ABC¹ØÓÚÔ­µãOµÄÖÐÐĶԳÆͼÐΡ÷A1B1C1£»
¢Ú»­³ö½«¡÷ABCÈƵãAÄæʱÕëÐýת90¡ãµÃµ½¡÷AB2C2£¬
¢Û¡÷A1B1C1Öж¥µãA1×ø±êΪ£¨1£¬-2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚÕý·½ÐÎABCDÖУ¬E¡¢FÊǶԽÇÏßBDÉÏÁ½µã£¬ÇÒ¡ÏEAF=45¡ã£¬½«¡÷ADFÈƵãA˳ʱÕëÐýת90¡ãºó£¬µÃµ½¡÷ABQ£¬Á¬½ÓEQ£¬ÇóÖ¤£º
£¨1£©EAÊÇ¡ÏQEDµÄƽ·ÖÏߣ»
£¨2£©EF2=BE2+DF2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÒ»´Îº¯Êýy=kx+b¾­¹ý£¨-1£¬2£©£¬ÇÒÓëyÖá½»µãµÄ×Ý×ø±êΪ4£¬ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ²¢»­³ö´Ëº¯ÊýµÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÈôÊý¾Ý2¡¢a¡¢3¡¢4µÄƽ¾ùÊýÊÇ3£¬¶øÕâ×éÊý¾ÝµÄ·½²îÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸