精英家教网 > 初中数学 > 题目详情
用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.
(1)求y关于x的函数关系式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.
(1)y关于x的函数关系式是y=﹣x2+16x;
当x是6或10时,围成的养鸡场面积为60平方米
不能围成面积为70平方米的养鸡场.理由见解析

试题分析:(1)根据矩形的面积公式进行列式;
把y的值代入(1)中的函数关系,求得相应的x值即可.
把y的值代入(1)中的函数关系,求得相应的x值即可.
试题解析:(1)设围成的矩形一边长为x米,则矩形的邻边长为:32÷2﹣x.依题意得
y=x(32÷2﹣x)=﹣x2+16x.
答:y关于x的函数关系式是y=﹣x2+16x;
(2)由(1)知,y=﹣x2+16x.
当y=60时,﹣x2+16x=60,即(x﹣6)(x﹣10)=0.
解得 x1=6,x2=10,
即当x是6或10时,围成的养鸡场面积为60平方米;
(3)不能围成面积为70平方米的养鸡场.理由如下:
由(1)知,y=﹣x2+16x.
当y=70时,﹣x2+16x=70,即x2﹣16x+70=0
因为△=(﹣16)2﹣4×1×70=﹣24<0,
所以 该方程无解.
即:不能围成面积为70平方米的养鸡场.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中, 抛物线+与直线交于A, B两点,点A在点B的左侧.
(1)如图1,当时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图2,抛物线+ 轴交于C,D两点(点C在点D的左侧).在直线上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时的值;若不存在,请说明理由.

图1                                   图2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是(  )
A.y=3(x+1)2+2B.y=3(x+1)2﹣2
C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线与x轴,y轴分别相交于点B,点C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴是直线
(1)求A点的坐标及该抛物线的函数表达式;
(2)求出∆PBC的面积;
(3)请问在对称轴右侧的抛物线上是否存在点Q,使得以点A、B、C、Q所围成的四边形面积是∆PBC的面积的?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用配方法求二次函数y=4x2-24x+26的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图:抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(-2,0),顶点是(1,3).下列说法中不正确的是(  )
A.抛物线的对称轴是x=1
B.抛物线的开口向下
C.抛物线与x轴的另一个交点是(2,0)
D.当x=1时,y有最大值是3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数(b>0)与反比例函数在同一坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是(  )

                         
A                  B                    C                   D

查看答案和解析>>

同步练习册答案